Industrial Rubber Goods Since 1921 ## Potomac RUBBER COMPANY, INC. **Potomac Rubber Company** • 9011 Hampton Overlook • Capitol Heights, MD 20743 Tel: 301-336-7400 • Fax: 301-350-6543 • info@potomacrubber.com • www.potomacrubber.com Potomac TECHNICAL INFORMATION ## **Hose Bend Radius Definition** #### **BEND RADIUS CONSIDERATIONS** #### **DEFINITIONS:** Bend Radius—The radius of a bent section of hose measured to the innermost surface of the curved portion. Minimum Bend Radius—The maximum amount a hose can be bent prior to putting excessive forces on the hose to the point of causing kinking or damage. The formula shows how to determine the minimum length of hose to make the angle of bend required. Remember that the bend should take place over the entire minimum length and not just a portion of it. #### GENERAL FORMULA $\frac{\text{Angle of Bend}}{360^{\circ}} \times 2 \quad r = \underset{\text{make bend}}{\text{Minimum length of hose to}}$ r =Given bend radius of hose Example: To make a 90° bend with Style B Water Suction & Discharge 2" I.D. Given r = 4.5 inches $$\frac{90^{\circ}}{360^{\circ}}$$ x 2 x 3.14 x 4.5 .25 x 2 x 3.14 x 4.5 = 7" minimum length of hose to make bend without damage to hose **NOTE:** This formula does not mean 7" will be long enough to meet application need. It only means that if the 90° bend takes place in less than 7", the hose could possibly be damaged. #### HOSE DELIVERY CHART #### Hose Delivery Chart FIGURES BASED ON PUTTING ON INCH OF WATER ON 5000 SQ.FT. OF LAWN USING LOW PRESSURE SPRINKLER. HIGH BACK PRESSURE MECHANICAL SPRINKLER WOULD RAISE WATERING TIME PROPORTIONALLY #### **OPEN-END DISCHARGE** THE TERM "OPEN -END DISCHARGE" REFERS TO A HOSE WHICH EMPTIES A FLUID INTO THE ATMOSPHERE. EVEN THOUGH ONE END IS OPEN, THE PRESSURE IS NOT LOW THROUGHOUT THE HOSE. The inlet end pressure is equal to that in the line to which the hose is connected unless THE FLOW RATE IS SO LOW THAT THE HOSE IN NOT COMPLETELY FILLED. THE PRESSURE ALONG THE HOSE LENGTH DROPS FROM A MAXIMUM AT THE INLET TO ZERO AT THE OUTLET AND THE PRESSURE AT ANY GIVEN POINT ALONG THE LENGTH IS NEARLY PROPORTIONAL TO THE DISTANCE FROM THE HOSE INLET. THE FLOLLOWING TABLE SHOWS THE FLOW IN GALLONS PER MINUTE FOR VARIOUS SIZE HOSES IN OPEN-END DISCHARGE SERVICE. #### **OPEN-END FLOW GPM** | | Pressure | | | но | SE LEN | GTH, FE | ET | | | | Pressure | | | н | SE LEN | GTH, FEE | T | | | |---------|--|--|--|--|--|--|--|--|--|----------------------|--|-------------------------------|---|--|--|--|--|--|--| | | At Inlet
psi | 25 | 50 | 75 | 100 | 125 | 150 | 200 | 300 | | At Inlet
psi | 25 | 50 | 75 | 100 | 125 | 150 | 200 | 300 | | ½" Hose | 30
40
50
60
70
80
90
100 | 10.4
12.1
13.8
15.2
16.6
18.0
19.0
20.1
22.8 | 6.2
8.5
9.4
10.4
11.2
12.1
13.0
13.8
15.5 | 5.6
6.2
7.5
8.5
9.0
9.8
10.4
11.0
12.5 | 4.8
5.6
6.4
7.1
7.8
8.5
8.8
9.4
10.5 | 4.3
5.0
5.6
6.2
6.8
7.3
7.7
8.5
9.4 | 3.8
4.5
5.1
5.6
6.2
6.6
7.1
7.5
8.5 | 3,3
3,8
4,0
4,9
5,3
5,6
6,0
6,4
7,2 | 2.6
3.2
3.5
3.8
4.2
4.5
4.8
4.9
5.8 | 1" Hose | 30
40
50
60
70
80
90
100 | 68.0
79.0
89.0
100.0 | 46.2
54.4
62.0
68.0
74.0
79.0
84.0
89.0
101.0 | 37.5
44.0
49.0
54.4
59.0
63.0
68.0
71.0
80.0 | 32.0
37.5
42.0
46.2
51.0
54.4
58.0
62.0
68.0 | 28.5
33.0
37.5
41.8
45.0
48.0
51.8
54.4
62.0 | 25.8
30.0
34.0
37.5
40.8
43.0
46.2
49.0
55.8 | 22.0
25.8
29.0
32.0
37.3
37.5
40.0
42.0
47.8 | 17.8
20.8
23.3
25.8
28.0
30.0
32.0
34.0
38.0 | | ⅓" Hose | 30
40
50
60
70
80
90
100 | 18.1
21.4
23.9
26.5
27.5
30.6
32.5
34.5
39.0 | 12.5
14.8
16.5
18.1
20.0
21.4
22.5
23.9
27.0 | 10.3
12.5
13.2
14.8
16.0
16.8
18.1
19.0
21.5 | 8.7
10.3
11.4
12.5
13.7
14.8
15.5
16.6
18.5 | 7,7
9.0
10.3
11.2
12.0
13.0
14.0
14.8
16.6 | 7.0
8.3
9.2
10.3
11.0
11.8
12.5
13.2
15.0 | 6.0
7.0
7.9
8.7
10.0
10.3
10.5
11.4
12.9 | 4.9
5.7
6.3
7.0
7.6
8.3
8.7
9.2
10.5 | 1¼" Hose
1¾" Hose | 100
150 | | 110.0
130.0
150.0
140.0
170.0
205.0 | 85.0
110.0
125.0
150.0
115.0
140.0
160.0
205.0 | 72.0
90.0
110.0
130.0
96.0
125.0
140.0
170.0 | 65.0
80.0
92.0
120.0
85.0
110.0
125.0 | 58.0
73.0
85.0
110.0
75.0
96.0
110.0
140.0 | 50.0
64.0
73.0
90.0
65.0
84.0
96.0
125.0 | 42.0
52.0
58.0
67.0
54.0
67.0
75.0
97.0 | | ¾" Hose | 30
40
50
60
70
80
90
100
125 | 31.0
36.0
41.0
45.5
49.5
53.0
56.2
60.0
68.0 | 21.3
25.0
28.0
31.0
34.0
36.0
39.0
41.0
46.0 | 21.3
17.2
20.0
22.5
25.0
27.2
29.1
31.0
33.0
37.5 | 14.8
17.2
19.2
21.3
23.5
25.0
27.0
28.0
32.0 | 13.0
15.2
17.2
19.0
21.0
22.0
23.8
25.0
28.0 | 11'8
13.8
15.5
17.2
18.8
20.0
21.3
22.6
25.8 | 10.2
11.8
13.2
14.8
17.1
17.2
18.2
19.2
21.8 | 8.2
9.4
10.7
11.8
12.8
13.8
14.8
15.5
17.5 | 1½" Hose | 50
75
100
150
50
75
100
125 | | 180.0
230.0
260.0
380.0
480.0
550.0 | 150.0
180.0
220.0
260.0
310.0
380.0
450.0
550.0 | 130.0
160.0
180.0
230.0
270.0
330.0
380.0
480.0 | 120.0
145.0
170.0
205.0
240.0
290.0
350.0
425.0 | 105.0
130.0
150.0
180.0
210.0
270.0
310.0
380.0 | 90.0
120.0
130.0
160.0
180.0
230.0
260.0
330.0 | 74 0
90.0
105.0
130.0
150.0
180.0
215.0
265.0 | #### Pressure-Temperature Equivalents of Saturated Steam Gauge Pressure at Sea Level | Lbs. Per | Toma | erature | Lbs. Per Temperature | | | | | | |----------------------------|----------------|----------------|--------------------------|-------|-------------------------|--|--|--| | Sq. In. | °F. | °C. | Sq. In. | °F. | °C. | | | | | | | | | | | | | | | 0
5 | 212.0 | 100.0 | 110 | 344.1 | 173.4 | | | | | 5 | 227.1 | 108.4 | 115 | 347.2 | 175.1 | | | | | 10 | 239.4 | 115.2 | 120 | 350.1 | 176.7 | | | | | 15 | 249.8 | 121.0 | 125 | 352.9 | 178.3 | | | | | 20 | 258.8 | 126.0 | 120
125
130 | 352.9 | | | | | | 20 | 236.6 | 120.0 | 130 | 355.6 | 179.8 | | | | | 22
24
26
28
30 | 261.2
265.3 | 127.8 | 135 | 358.3 | 181.3 | | | | | 24 | 265.3 | 129.6 | 140 | 360.9 | 182.7 | | | | | 26 | 268.3 | 131.3 | 145 | 363.4 | 184.1 | | | | | 28 | 271 2 | 132.9 | 150 | 365.9 | 104,1 | | | | | 30 | 271.2
274.1 | 134.5 | 155 | | 185.5 | | | | | 30 | 2/4.1 | 134.5 | 135 | 368.2 | 186.8 | | | | | 32
34 | 276.8 | 136.0 | 160
165 | 370.6 | 188.1 | | | | | 34 | 279.3 | 137.4 | 165 | 373.9 | 189.4 | | | | | 36 | 281.8 | 138.8 | 170
175 | 375.3 | 190.7 | | | | | 38 | 284.4 | 140.2 | 175 | 377.4 | 191.9 | | | | | 40 | 286.7 | 141.5 | 180 | 379.6 | | | | | | 70 | 200.7 | 141.5 | 180 | 379.6 | 193.1 | | | | | 42
44 | 289.0 | 142.8 | 185 | 381.7 | 194.3 | | | | | 44 | 291.2 | 144.0 | 190 | 383.7 | 195.4 | | | | | 46 | 293.5 | 145.3 | 195 | | 190.4 | | | | | 48 | 295.5 | 146.4 | 193 | 385.9 | 196.6 | | | | | 50 | 293.3 | | 200
205 | 387.9 | 197.7 | | | | | 50 | 297.7 | 147.6 | 205 | 398.8 | 198.8 | | | | | 52
54
56 | 299.9 | 148.7 | 210
215
220
225 | 391.6 | 199.8 | | | | | 54 | 301.6 | 149.8 | 215 | 392.9 | 199.8
200.5
201.7 | | | | | 56 | 303.6 | 150.9 | 220 | 395.4 | 200.3 | | | | | 58 | 308.4 | 151.9 | 255 | 397.2 | 201.7 | | | | | 60 | 307.4 | 153.0 | 223 | | 202.9 | | | | | 00 | 307.4 | 153.0 | 230 | 399.0 | 203.9 | | | | | 62 | 309.2 | 154.0 | 235
240 | 400.7 | 204.8 | | | | | 64 | 310.8 | 154.9 | 240 | 402.5 | 205.8 | | | | | 66 | 312.6 | 155.9 | 245 | 404.2 | 203.6 | | | | | 68 | 314.2 | 156.8 | 250 | 404.2 | 206.8 | | | | | 68
70 | 316.0 | | 245
250
255 | 406.1 | 207.8
208.7 | | | | | 70 | 316.0 | 157.0 | 255 | 407.7 | 208.7 | | | | | 72 | 317.7 | 158.7 | 260 | 409.4 | 209.7 | | | | | 74 | 319.3 | 159.6 | 265 | 411.0 | 210.6 | | | | | 76 | 320.9 | 160.5 | 270 | 412.6 | 211.4 | | | | | 78 | 322.3 | 161.3 | 270
275
280 | | ∠11.4 | | | | | 80 | 323.8 | 101.3 | 2/3 | 414.2 | 212.3 | | | | | | 323.6 | 162.1 | 280 | 415.7 | 213.2 | | | | | 85 | 327.6 | 164.2 | 300 | 421.0 | 216.1 | | | | | 90 | 331.2 | 166.2 | 350 | 436.5 | 224.7 | | | | | 95
| 334.6 | 168.1 | | 700.0 | 667.1 | | | | | 100 | 337.8 | 169.9 | | | | | | | | 105 | 341.1 | 169.9
171.7 | | | | | | | | .00 | 341.1 | 171.7 | 1 | | | | | | | | | | | | | | | | ## STEEL PIPE AND WROUGHT IRON PIPE SIZES MEASURED BY INSIDE DIAMETER TO AND INCLUDING 12 INCHES OVER 12 BY OUTSIDE DIAMETER | | | STANDAR | D PIPE | | | EXTRA HE | AVY PIPE | | |--|---|---|--|--|---|--|--|--| | Nominal
Inside
Diameter | Actual
Inside
Diameter | Approximate
Inside
Diameter
(Inches) | Actual
Outside
Diameter | Approximate Outside Diameter (Inches) | Actual
Inside
Diameter | Approximate
Inside
Diameter
(Inches) | Actual
Outside
Diameter | Approximate
Outside
Diameter
(inches) | | 1/8" | 0.27 | 17/64 | 0.405 | 13/32 | 0.21 | 7/32 | 0.405 | 13/32 | | 1/4" | 0.36 | 23/64 | 0.54 | 35/64 | 0.29 | 19/64 | 0.54 | 35/64 | | 3/8" | 0.49 | 31/64 | 0.675 | 43/64 | 0.42 | 27/64 | 0.675 | 43/64 | | 1/2" | 0.62 | 5/8 | 0.84 | 27/32 | 0.54 | 35/64 | 0.840 | 27/32 | | 3/4" | 0.82 | 53/64 | 1.05 | 1 3/64 | 0.74 | 47/64 | 1.050 | 1 3/64 | | 1" | 1.05 | 1 3/64 | 1:315 | 1 5/16 | 0.95 | 61/64 | 1.315 | 1 5/16 | | 1 1/4" | 1.38 | 1 3/8 | 1.66 | 1 21/32 | 1.27 | 1 17/64 | 1.660 | 1 21/32 | | 1 1/2" | 1.61 | 1 39/64 | 1.90 | 1 29/32 | 1.49 | 1 31/64 | 1.90 | 1 29/32 | | 2" | 2.07 | 2 5/64 | 2.375 | 2 3/8 | 1,93 | 1 15/16 | 2.375 | 2 3/8 | | 2 1/2" | 2.47 | 2 15/32 | 2.875 | 2 7/8 | 2,32 | 2 21/64 | 2.875 | 2 7/8 | | 3" | 3.07 | 3 5/64 | 3.50 | 3 1/2 | 2,89 | 2 57/64 | 3.50 | 3 1/2 | | 3 1/2" | 3.55 | 3 35/64 | 4.00 | 4 | 3,36 | 3 23/64 | 4.00 | 4 | | 4" | 4.03 | 4 1/32 | 4.50 | 4 1/2 | 3,82 | 3 53/64 | 4.50 | 4 1/2 | | 4 1/2" | 4.51 | 4 33/64 | 5.00 | 5 | 4,28 | 4 9/32 | 5.00 | 5 | | 5"
6"
7"
8"
9"
10"
11" | 5.05
6.07
7.02
8.07
8.94
10.19
11.00
12.09 | 5 3/64
6 5/64
7 1/64
8 5/64
8 15/16
10 3/16
11
12 3/32 | 5.563
6.625
7.625
8.625
9.625
10.75
11.75
12.75 | 5 9/16
6 5/8
7 5/8
8 5/8
9 5/8
10 3/4
11 3/4
12 3/4 | 4.81
5.75
6.63
7.63
8.63
9.75
10.75 | 4 13/16
5 3/4
6 5/8
7 5/8
8 5/8
9 3/4
10 3/4
11 3/4 | 5.563
6.625
7.625
8.625
9.625
10.75
11.75
12.75 | 5 9/16
6 5/8
7 5/8
8 5/8
9 5/8
10 3/4
11 3/4
12 3/4 | | 14" O.D. | 13.25 | 13 1/4 | 14.00 | 14 | 13.00 | 13 | 14.00 | 14 | | 15" O.D. | 14.25 | 14 1/4 | 15.00 | 15 | 14.00 | 14 | 15.00 | 15 | | 16" O.D. | 15.25 | 15 1/4 | 16.00 | 16 | 15.00 | 15 | 16.00 | 16 | #### **Water Discharge** Flow of Water Through 100 Foot Lengths Hose, Straight-Smooth Bore U.S. Gallons Per Minute | Pressure
PSI | | Discharge in U.S. Gallons Per Minute – Nominal Hose Diameters | | | | | | | | | | | | | | |-----------------|------|---|------|----|-------|-------|-----|-------|------|------|------|--|--|--|--| | Inlet | 1/2" | 5/8″ | 3/4" | 1" | 11/4" | 11/2" | 2" | 21/2" | 3" | 4" | 6" | | | | | | 30 | 5 | 9 | 15 | 30 | 60 | 90 | 200 | 350 | 580 | 1250 | 3630 | | | | | | 40 | 6 | 11 | 16 | 35 | 65 | 110 | 240 | 425 | 675 | 1450 | 4270 | | | | | | 50 | 7 | 12 | 20 | 40 | 73 | 120 | 265 | 475 | 750 | 1620 | 4790 | | | | | | 60 | 8 | 14 | 22 | 45 | 80 | 130 | 290 | 525 | 850 | 1800 | 5250 | | | | | | 75 | 9 | 16 | 24 | 50 | 90 | 150 | 330 | 580 | 950 | 2000 | 6030 | | | | | | 100 | 10 | 17 | 29 | 60 | 105 | 180 | 385 | 680 | 1100 | 2300 | 7000 | | | | | | 125 | 12 | 20 | 32 | 65 | 120 | 200 | 430 | 760 | 1200 | 2600 | 7770 | | | | | | 150 | 13 | 22 | 34 | 70 | 135 | 215 | 460 | 850 | 1300 | 2900 | 8610 | | | | | Figures are to be used as a guide since the hose inside diameter tolerance, the type of fitting used, orifice restriction all influence the actual discharge. Thus, variations plus or minus from the table may be obtained in actual service. #### **Friction Loss in Water Hose** Pounds Per Square Inch Per 100 Foot Length **Straight-Smooth Bore** | Flow of
Water in
U.S. Gal. | | | | | А | ctual Intern | al Diamete | r, Inches | | | | | | |---|-------------------------------------|---|--|---|---|---|--|--|--|--|--|---|--| | Per Min. | 1/2 | 5/8 | 3/4 | 1 | 11/4 | 1 1/2 | 2 | 21/2 | 3 | 4 | 5 | 6 | 8 | | 0.5 1.5 2.5 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100 125 150 225 250 275 300 325 350 375 400 450 500 600 700 800 900 1100 1200 1300 1400 1500 1500 1600 1800 2000 | 0.4
3.02
7.75
27.8
99.5 | 1.01
2.58
9.27
33.2
71.0
121.0 | 0.42
1.08
3.86
13.8
29.6
50.3
76.5
108.0
142.0 | 0.95
3.38
7.25
12.4
18.7
26.5
34.8
44.7
55.0
67.5
94.3
126.0 | 0.32
1.14
2.45
4.15
6.34
8.96
11.8
15.1
18.6
22.8
31.8
42.5
54.6
67.5
81.5
124.0 | 0.13
0.47
1.01
1.71
2.60
3.68
4.83
6.20
7.65
9.35
13.1
17.5
22.5
27.8
33.5
50.6
72.1
94.5
122.0 | 0.12
0.25
0.64
0.90
1.18
1.52
1.87
2.28
3.19
4.25
5.48
6.80
8.19
12.4
17.6
23.1
29.6
36.8
44.6
53.3
62.5
72.5
83.2
94.5 | 0.08
0.14
0.22
0.30
0.40
0.51
0.63
0.78
1.08
1.44
1.86
2.30
2.78
4.20
5.97
7.83
10.1
12.5
15.2
18.1
21.2
24.6
28.2
32.1
36.2
44.9
54.5
76.5
102.0
131.0 | 0.13
0.17
0.21
0.26
0.32
0.45
0.60
0.77
0.95
1.15
1.73
2.46
3.23
4.15
5.15
6.28
7.45
8.75
10.2
11.7
13.3
14.9
18.6
22.5
31.6
42.1
53.9
66.8
81.4
97.0
114.0
132.0 | 0.23
0.28
0.43
0.60
0.79
1.02
1.26
1.53
1.83
2.19
2.48
2.86
3.24
3.24
3.24
3.24
10.3
13.2
16.4
19.9
23.8
27.9
32.4
37.2
42.1
47.5
59.0
71.9 | 0.20
0.27
0.34
0.43
0.52
0.62
0.73
1.10
1.23
2.00
2.61
3.47
5.83
6.72
8.01
9.43
10.9
12.5
14.2
16.1
19.9
24.2 | 0.30
0.35
0.40
0.45
0.51
1.49
2.29
2.78
3.39
4.52
5.18
5.66
8.26
10.02 | 0.19
0.27
0.35
0.45
0.56
0.69
0.72
0.96
1.11
1.28
1.45
1.45
2.03
2.47 | To convert from pounds per sq. inch pressure to feet of hydraulic head multiply pounds per sq. inch by 2.309. To convert from U.S. gallons per min. to cubic feet per min. multiply U.S. gallons per min. by 0.1337. Based On p = $\frac{0.483Q^{1.85}}{d^{4.87}}$ Where p = pressure loss in lbs. per sq. inch Q = quantity in U.S. Gallons per minute d = diameter of hose in inches #### **Conversion Factor** Flow of Water Through Lengths Other Than 100 Feet Straight-Smooth Bore #### pressure conversion Feet of water to pounds per sq. inch. (Based on formula Pressure (psi) = Pressure Head [Ft. of Water]x 0.433) | Pressure Head
(Ft. of Water) | Pressure
(psi) | Pressure Head
(Ft. of Water) | | Pressure Head
(Ft. of Water) | Pressure
(psi) | |---------------------------------|-------------------|---------------------------------|-----|---------------------------------|-------------------| | 0 | 0 | 200 | 87 | 410 | 177 | | 5 | 2.2 | 210 | 91 | 420 | 182 | | 10 | 4.3 | 220 | 95 | 430 | 186 | | 20 | 8.7 | 230 | 100 | 440 | 190 | | 30 | 13.0 | 240 | 104 | 450 | 195 | | 40 | 17 | 250 | 108 | 460 | 199 | | 50 | 22 | 260 | 113 | 470 | 203 | | 60 | 26 | 270 | 117 | 480 | 208 | | 70 | 30 |
280 | 121 | 490 | 212 | | 80 | 35 | 290 | 126 | 500 | 216 | | 90 | 39 | 300 | 130 | 550 | 238 | | 100 | 43 | 310 | 134 | 600 | 260 | | 110 | 48 | 320 | 139 | 650 | 281 | | 120 | 52 | 330 | 143 | 700 | 303 | | 130 | 56 | 340 | 147 | 750 | 325 | | 140 | 61 | 350 | 151 | 800 | 346 | | 150 | 65 | 360 | 156 | 850 | 368 | | 160 | 69 | 370 | 160 | 900 | 390 | | 170 | 74 | 380 | 164 | 950 | 411 | | 180 | 78 | 390 | 169 | 1000 | 433 | | 190 | 82 | 400 | 173 | | | #### Feet of water to inches of mercury. | Feet of
Water | In. Hg. | Feet of
Water | In Hg. | |------------------|---------|------------------|--------| | 1 | 0,9 | 18 | 15.9 | | 2 | 1.8 | 20 | 17.7 | | 4 | 3.5 | 22 | 19.4 | | 6 | 5.3 | 24 | 21.2 | | 8 | 7.1 | 26 | 23.0 | | 10 | 8.8 | 28 | 24.8 | | 12 | 10.6 | 30 | 26.5 | | 14 | 12.4 | 32 | 28.3 | | 16 | 14.1 | 34 | 30.0 | #### WATER FLOW THROUGH HOSE (SMOOTH BORE) (INCLUDING GARDEN HOSE) HOSE SIZES: 3/8" to 1" I.D. WATER TEMPERATURE: 63° F. **INDUSTRIAL RUBBER PRODUCTS** **SINCE 1921** #### Friction Loss of Pressure in Air Hose (Pulsating Pressure Flow) | I.D. of
Hose | Gauge
Pressure | 40 | 50 | 60 | Cubic I
70 | Cubic Feet Air Per Minute Through 100 Ft. Hose Lines 70 80 90 100 110 120 Loss of Pressure in Lbs. Per Sq. Inch | | | | | | 140 | 150 | |-----------------------|--|--|--|---|---|---|--|--|---|---|--|---|---| | ½" Hose
(Coupled) | 50
60
70
80
90
100 | 20.2
16.8
14.0
12.0
10.8
9.6
8.6 | 36.2
29.6
24.8
21.6
19.0
16.8
15.2 | 46.8
40.0
34.8
29.6
26.6
24.0 | 56.8
50.4
44.0
38.6
35.2 | 69.2
61.0
54.4
49.2 | 82.0
73.3
66.6 | 89.0 | | | | | | | ¾" Hose
(Coupled) | 50
60
70
80
90
100
110 | 3.0
2.4
1.8
1.6
1.4
1.2 | 4.8
3.8
3.0
2.6
2.2
2.0
1.8 | 7.0
5.6
4.6
3.8
3.2
2.8
2.6 | 8.8
7.6
6.4
5.6
4.6
4.0
3.6 | 13.0
10.4
8.4
7.2
6.2
5.4
4.8 | 17.0
13.6
11.0
9.4
8.0
7.0
6.2 | 22.8
17.2
14.0
11.6
10.0
8.8
7.8 | 28.4
22.4
17.6
14.4
12.4
10.8
9.8 | 28.2
22.0
17.6
15.0
13.2
11.8 | 21.2
18.0
15.8
14.2 | 21.6
18.8
16.8 | 22.2
19.8 | | 1" Hose
(Coupled) | 50
60
70
80
90
100 | .6
.6
.4
.4
.4
.4 | 1.0
.8
.8
.6
.6 | 1.6
1.2
1.0
1.0
.8
.8 | 2.2
1.6
1.4
1.4
1.2
1.0 | 3.0
2.4
2.0
1.6
1.4
1.2 | 4.0
3.0
2.6
2.2
1.8
1.6
1.4 | 5.2
4.0
3.2
2.8
2.4
2.0
1.8 | 7.0
5.2
4.0
3.4
2.8
2.4
2.2 | 9.6
6.6
5.0
4.0
3.4
3.0
2.6 | 14.0
8.2
6.2
4.8
4.0
3.6
3.0 | 11.0
7.6
5.4
4.8
4.2
3.6 | 14.4
9.4
7.0
5.6
4.8
4.2 | | 1¼" Hose
(Coupled) | 50
60
70
80
90
100 | | .4 | .4
.4
.4
.2 | .6
.6
.4
.4
.4
.2 | .8
.6
.6
.4
.4 | 1.0
1.0
.8
.6
.6
.4 | 1.4
1.2
.8
.8
.6
.6 | 2.0
1.6
1.2
1.0
.8
.8 | 2.0
1.4
1.2
1.0
.8 | 2.4
1.6
1.4
1.2
1.0 | 3.0
2.0
1.6
1.4
1.2 | 2.6
2.0
1.6
1.4
1.2 | | 1½" Hose
(Coupled) | 50
60
70
80
90
100
110 | | | | | .4 | .4
.4
.2 | .4
.4
.4
.2 | .6
.4
.4
.4
.2 | .8
.6
.6
.4
.4
.4 | .8
.6
.6
.4
.4
.4 | 1.0
.8
.6
.6
.4
.4 | 1.2
1.0
.8
.8
.6
.4 | #### FRACTIONAL, DECIMAL AND METRIC CROSS-REFERENCE #### **ENGLISH TO METRIC CONVERSIONS** | 1/16 Inch | .0625 Inch | 1.5 MM | |-----------|-----------------|---------| | 1/8 '' | .125 '' | 3.1 MM | | 3/16 '' | .1875 " | 4.7 MM | | 1/4 '' | .25 '' | 6.3 MM | | 5/16 '' | .3125 ' | 7.9 MM | | 3/8 " | .375 " | 9.5 MM | | 7/16 '' | .4375 '' | 11.1 MM | | 1/2 " | .5 '' | 12.7 MM | | 9/16 '' | .5625 '' | 14.2 MM | | 5/8 " | . 625 '' | 15.8 MM | | 11/16 " | .6875 '' | 17.4 MM | | 3/4 " | .75 '' | 19.0 MM | | 13/16 " | .8125 '' | 20.6 MM | | 7/8 " | .875 '' | 22.2 MM | | 15/16 " | .9375 '' | 23.8 MM | | 1 " | 1.0 '' | 25.4 MM | #### METRIC TO ENGLISH CONVERSIONS | 1 MM | .039 | nch A | pproximately | 5/128 | Inch | |-------|------|-------|--------------|-------|------| | 2 MM | .078 | ,, | ,, | 5/64 | ,, | | 3 MM | .118 | " | ,, | 1/8 | ,, | | 4 MM | .157 | ,, | ,, | 5/32 | ,, | | 5 MM | .197 | " | ,, | 3/16 | ,, | | 6 MM | .236 | " | , | 15/64 | ,, | | 7 MM | .276 | ,, | ** | 9/32 | ,, | | 8 MM | .315 | " | ,, | 5/16 | ,, | | 9 MM | .354 | " | 1, | 23/64 | ,, | | 10 MM | .394 | ,, | ,, | 25/64 | " | #### APPROXIMATE CONVERSION FACTORS TO CONVERT ENGLISH TO METRIC: DIVIDE DECIMAL INCHES BY .039 TO CONVERT METRIC TO ENGLISH: MULTIPLY METRIC BY .039 #### **METRIC EQUIVALENTS** ## LINEAL MEASUREMENT UNITS CENTIMETER, METER AND KILOMETER EQUIVALENTS OF INCHES, FEET AND MILES | Feet | Inches | Centimeters | Meters | Feet | Miles | Meters | Kilometer | |------|--------|-------------|--------|---------|--------|---------|-----------| | 1/ | 4 | 0.54 | 0.0054 | 0.5 | | 7.00 | | | 1/12 | 1 | 2.54 | 0.0254 | 25 | _ | 7.62 | _ | | 1 | 12 | 30.48 | 0.3048 | 50 | _ | 15.24 | _ | | 2 | _ | 60.96 | 0.6096 | 75 | _ | 22.86 | _ | | | | | | | | | | | 3 | 36 | 91.44 | 0.9144 | 100 | _ | 30.48 | _ | | 3.28 | 39.36 | 100.00 | 1.0000 | 125 | _ | 38.10 | _ | | 4 | _ | 121.92 | 1.1292 | 150 | _ | 45.72 | _ | | 5 | _ | 152.40 | 1.5240 | 300 | _ | 91.44 | _ | | 6 | _ | 182.88 | 1.8288 | 500 | _ | 152.40 | 0.15240 | | 7 | _ | 213.36 | 2.1336 | 1000 | _ | 304.80 | 0.30480 | | 8 | _ | 243.84 | 2.4384 | 3280.84 | 0.6214 | 1000.00 | 1.00000 | | 9 | _ | 274.32 | 2.7432 | 5280 | 1.0000 | 1609.35 | 1.60935 | | 10 | _ | 304.80 | 3.0480 | _ | _ | _ | _ | 1 Foot = 30.480 Centimeters 1 Mile = 1609.35 Meters 1 Meter = 3.28083 Feet 1 Kilometer = .62137 Miles ## LINEAL MEASUREMENT UNITS MILLIMETER AND CENTIMETER-EQUIVALENTS OF INCHES | Fractional Inches | Decimal
Inches | Millimeters | Centimeters | Inches | Millimeters | Centimeters | |-------------------|-------------------|-------------|-------------|--------|-------------|-------------| | 1/8 '' | 0.12500 | 3.175 | 0.318 | 6" | 152.4 | 15.24 | | 3/16'' | 0.18750 | 4.763 | 0.476 | 7'' | 177.8 | 17.78 | | 1/4'' | 0.25000 | 6.350 | 0.635 | 8" | 203.2 | 20.32 | | 5/16'' | 0.31250 | 7.938 | 0.794 | 10" | 254.0 | 25.40 | | 3/8'' | 0.37500 | 9.525 | 0.953 | 12" | 304.8 | 30.48 | | 1/2'' | 0.50000 | 12.700 | 1.270 | 14" | 355.6 | 35.56 | | 5/8'' | 0.62500 | 15.875 | 1.588 | 16" | 406.4 | 40.64 | | 3/4'' | 0.75000 | 19.050 | 1.905 | 18" | 457.2 | 45.72 | | 1'' | 1.00000 | 25.400 | 2.540 | 20" | 508.0 | 50.80 | | 1-1/8'' | 1.12500 | 28.575 | 2.858 | 24'' | 609.6 | 60.96 | | 1-1/4'' | 1.25000 | 31.750 | 3.175 | 30" | 762.0 | 76.20 | | 1-¾'' | 1.37500 | 34.925 | 3.493 | 36'' | 914.4 | 91.44 | | 1-1/2'' | 1.50000 | 38.100 | 3.810 | 42'' | 1066.8 | 106.68 | | 2" | 2.00000 | 50.80 | 5.08 | 48'' | 1219.2 | 121.92 | | 2-1/2'' | 2.50000 | 63.50 | 6.35 | 54'' | 1371.6 | 137.16 | | 3'' | 3.00000 | 76.20 | 7.62 | 60'' | 1524.0 | 152.40 | | 3-1/2'' | 3.50000 | 88.90 | 8.89 | 66" | 1676.4 | 167.64 | | 4'' | 4.00000 | 101.60 | 10.16 | 72" | 1828.8 | 182.88 | | 4-1/2'' | 4.50000 | 114.30 | 11.43 | | | | | 5'' | 5.00000 | 127.00 | 12.70 | | | | 1 Inch = 25.40 Millimeters 1 Millimeter = .03937 Inches ## **Coupling Thread Compatibility** Industrial Hose Couplings have threads which are usually one of the various "pipe" threads. All pipe threads are commonly referred to by the generic name of Iron Pipe Thread or IPT. There are several different types of IPT threads and you must know specifically what they are to insure compatibility with mating threads. #### **IPT Thread Compatibility Chart** | Description | Seal | Thread
(Female) | Compatible
Threads (Male) | |---|--|--------------------|------------------------------| | American Standard Tapered
Pipe Thread | Thread Seal
(with Sealing
Compound) | NPT | NPT
NPTF | | American Standard Tapered
Dryseal Pipe Thread | Thread Seal
(Dryseal) | NPTF | NPTF
NPT—(with
Sealer) | | American Standard Straight Pipe Thread for mechanical joints (Includes 2 female types, depending on sealing method, and one male type compatible with both females) | Washer or
Mechanical
Ground
Joint | NPSM | NPSM
NPT
NPTF | | American Standard Straight Pipe Threads for hose couplings and nipples | Washer | NPSH | NPSH
NPT
NPTF | ## **Table of Standard Threads** The following tables show the outside diameter of male part, and number of threads per inch of the various standards of hose threads | | D4010 0 D | | | | | |---------------|------------------------|--------------------|--------|------------|----------| | | BASIC O.D. | THREADS | | BASIC O.D. | THREADS | | SIZE | MALE PART | PER INCH | SIZE | MALE PART | PER INCH | | NATIONAL STAN | DARD THREAD (U.S. Form | n Thread) | | | | | 3/4" | 1.375 | 8 | 3" | 3.6239 | 6 | | 1" | 1.375 | 8 | 3-1/2" | 4.2439 | 6 | | 1-1/2" | 1.9900 | 9 | 4-1/2" | 5.7659 | 4 | | 2-1/2" | 3.0686 | 7-1/2 | | | | | STRAIGHT
IRON | PIPE THREAD — Standard | for Hose Couplings | | | | | 1/4" | .534 | 18 | 1-1/2" | 1.8788 | 11-1/2 | | 3/8" | .671 | 18 | 2" | 2.3528 | 11-1/2 | | 1/2" | .8248 | 14 | 2-1/2" | 2.855 | 8 | | 3/4" | 1.0353 | 14 | 3" | 3.470 | 8 | | 1" | 1.2951 | 11-1/2 | 3-1/2" | 3.970 | 8 | | 1-1/4" | 1.6399 | 11-1/2 | 4" | 4.470 | 8 | | REGULAR GARD | EN HOSE THREAD | | | | | | 1/2" | 1.0625 | 11-1/2 | 3/4" | 1.0625 | 11-1/2 | | 5/8" | 1.0625 | 11-1/2 | | | | | | | | | | | A "CAPITAL" NAME IN RUBBER ## TABLE OF DECIMAL AND METRIC EQUIVALENTS | 64ths | 32nds | 16ths | 8ths | Decimal | мм | |-------|-------|-------|------|---------|--------| | 1/64 | | | | 0.01562 | 0.397 | | | 1/32 | | | 0.03125 | 0.794 | | 3/64 | | | | 0.04688 | 1.191 | | | | 1/16 | | 0.06250 | 1.588 | | 5/64 | | | | 0.07812 | 1.984 | | | 3/32 | | | 0.09375 | 2.381 | | 7/64 | | | | 0.10938 | 2.778 | | | | | 1/8 | 0.12500 | 3.175 | | 9/64 | | | | 0.14062 | 3.572 | | | 5/32 | | | 0.15625 | 3.968 | | 11/64 | | | | 0.17188 | 4.366 | | | | 3/16 | | 0.18750 | 4.763 | | 13/64 | | | | 0.20312 | 5.159 | | | 7/32 | | | 0.21875 | 5.556 | | 15/64 | | | | 0.23438 | 5.953 | | | | | 1/4 | 0.25000 | 6.350 | | 17/64 | | | | 0.26562 | 6.747 | | | 9/32 | | | 0.28125 | 7.144 | | 19/64 | | | | 0.29688 | 7.541 | | | | 5/16 | | 0.32150 | 7.938 | | 21/64 | | | | 0.32812 | 8.334 | | | 11/32 | | | 0.34375 | 8.731 | | 23/64 | | | | 0.35938 | 9.128 | | | | | 3/8 | 0.37500 | 9.525 | | 25/64 | | | | 0.39062 | 9.922 | | | 13/32 | | | 0.40625 | 10.319 | | 27/64 | | | | 0.41288 | 10.716 | | | | 7/16 | | 0.43750 | 11.113 | | 29/64 | | | | 0.45312 | 11.509 | | | 15/32 | | | 0.46875 | 11.906 | | 31/64 | | | | 0.48438 | 12.303 | | | | | 1/2 | 0.50000 | 12.700 | | | | | | Τ | | |-------|-------|-------|-----------------|---------|--------| | 64ths | 32nds | 16ths | 8ths | Decimal | MM | | 33/64 | | | | 0.51562 | 13.097 | | | 17/32 | | | 0.53125 | 13.494 | | 35/64 | | | | 0.54688 | 13.891 | | | | 9/16 | | 0.56250 | 14.288 | | 37/64 | | | | 0.57812 | 14.684 | | | 19/32 | | | 0.53975 | 15.081 | | 39/64 | | | | 0.60938 | 14.478 | | | | | 5/8 | 0.62500 | 15.875 | | 41/64 | | | | 0.64062 | 16.272 | | | 21/32 | | | 0.65625 | 16.669 | | 43/64 | | | | 0.67188 | 17.066 | | | | 11/16 | | 0.68750 | 17.463 | | 45/64 | | | | 0.70312 | 17.859 | | | 23/32 | | | 0.71875 | 18.256 | | 47/64 | | | | 0.73438 | 18.653 | | | | | 3/4 | 0.75000 | 19.050 | | 49/64 | | | | 0.76562 | 19.447 | | | 25/32 | | | 0.78125 | 19.844 | | 51/64 | | | | 0.79688 | 20.241 | | | | 13/16 | | 0.81250 | 20.638 | | 53/64 | | | | 0.82812 | 21.034 | | | 27/32 | | | 0.84375 | 21.431 | | 55/64 | | | | 0.85938 | 21.823 | | | | | ⁷ /8 | 0.87500 | 22.225 | | 57/64 | | | | 0.89062 | 22.622 | | | 29/32 | | | 0.90625 | 23.019 | | 59/64 | | | | 0.92188 | 23.416 | | | | 15/16 | | 0.93750 | 23.813 | | 61/64 | | | | 0.95312 | 24.209 | | | 31/32 | | | 0.96875 | 24.606 | | 63/64 | | | | 0.98438 | 25.003 | | | | | 1 | 1.0000 | 25.400 | **CAN'T FIND IT? CALL US** #### **DECIMAL EQUIVALENT CHART** #### **Chemical Resistance Tables** The ratings shown in the following Chemical Resistance Tables are based upon data obtained from published literature, polymer suppliers, rubber manufacturers, field experience and specific laboratory testing. The tables are intended to serve only as a guide in the selection of an elastomer type for service in the chemicals and fluids listed. We cannot guarantee the accuracy nor assume the responsibility for the use thereof. Data is based upon room temperature conditions unless specifically noted otherwise. Increases in concentrations of chemicals, increases in temperature or a combination of both can have a detrimental effect on the chemical resistance characteristics of an elastomer type. The data shown does not Imply conformance to meeting the requirements of State or Federal Regulations when handling food products. #### **Chemical Resistance Rating Guide:** - A Little or No Effect - **B** Slight to Moderate Effect - **C** Conditional—May be suitable for limited or intermittent service - Insufficient or No Data Available - X Not Recommended for use #### **Elastomer Types:** NR-Natural Rubber, Isoprene SBR—Styrene butadiene Rubber, GRS FPM-Fluoroelastomer, Viton NBR-Acrylonitrile-butadiene, Nitrile **CR**—Chloroprene, Neoprene **EPDM**— Ethylene-propylene-diene terpolymer CSM-Chlorosulfonated Polyethylene, Hypalon XLPE—Cross-linked Polyethylene | | | 655 | ED.4 | | NDT : | | ED511 | 0.5. | VI | 1 | 1 | 000 | FESS | NEE | NDD // | 65 | EDD: | 0011 | VI 55 | |---|-----------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|------------------|--|-----------------------|--------------------------------------|------------------|-----------------------|-----------------------|------------------|------------------|-----------------------|------------------| | About As About 1 | NR | SBR | FPM | NBR | NBR-II | CR | EPDM | CSM | XLPE | | NR | SBR | FPM | NBR | NBR-II | CR | EPDM | CSM | XLPE | | Absolute Alcohol
Acetal
Acetaldehyde
Acetamide
Acetate of Lime | A
C
X
B | A X X - | В
X
В
X | А
Х
А
В | А
Х
А
В | A
C
B
B | A
A
A | C
B
A | A
A
A
A | Allyl Phenyl Methyl Ether
Almond Oil, Artificial
Alpha Chloropropylene
Alpha Chlorotoluene
Alpha Hydroxypropionic Acid | X
X
X
X
A | X
X
X
— | <u>В</u> X X — | X
X
X
B | X
X
X
B | X
X
X
B | X
B
X
X | X
X
X | X
X
X | | Acetate Solvents
Acetic Acid - 5%
Acetic Acid - 10%
Acetic Acid - 20%
Acetic Acid - 30% | C B B B | C B B B B | X A A B C | X
B
B
B | X | X
A
A
A | B
A
A
A | X
A
A
A | X A A A A | Alpha Hydroxytoluene
Alum
Alum (NH3Cr-K)
Aluminum Acetate
Aluminum Acetate Solution | X
A
A
A | X
A
B | X
X
X
X | X
A
B
B | X
A
B
B | X
A
B
B | X
A
A
— | X
A
B
B | X
A
A | | Acetic Acid - 50%
Acetic Acid - Glacial
Acetic Acid - Hot Hi Press
Acetic Aldehyde
Acetic Anhydride | C C X C B | C
X
B | C
X
X
X | C
C
X
X | C
C
X
X | C
X
C
B | A
B
B
A
A | B C C C A | A
A
A
A | Aluminum Ammonium Sulfat
Aluminum Bromide
Aluminum Chloride
Aluminum Chloride - 150°F
Aluminum Fluoride | e A A A B | —
A
A
A | —
A
A
A | B
A
A
A | B
A
A
A | B
A
A
A | —
A
A
A | —
A
B
A | —
A
A
A | | Acetic Ester
Acetic Ether
Acetic Oxide
Acetidin
Acetoacetic Acid | X
X
C
X
B | $\frac{x}{x}$ | X
X
X | X
X
C
X | X
C
X | X
X
B
X
X | B
B
B | X
X
A
— | B
B
B | Aluminum Fluoride - 150°F
Aluminum Formate
Aluminum Hydroxide
Aluminum Nitrate
Aluminum Phosphate | B
X
A
A | A
—
A
A | A
C
A
A | A
X
B
A
A | A
X
B
A
A | A
A
A | A
X
A
A | A
X
B
A | A
X
A
A | | Acetoacetic Ester
Acetone
Acetone Cyanhydrin
Acetonic
Acetonitrile | B
B
C
B | | X
X
X | X
X
X
C | X
X
X
C | X
B
B
B | B
A
X
A | —
В
С
В | | Aluminum Potassium Sulfate
Aluminum Sodium Sulfate
Aluminum Sulfate
Ambrex 33 Mobil
American Ashes | A
A
X
A | A
A
B
X
A | A
A
A
A | A
A
A
A | A
A
A
A | A
A
B
A | A
A
X
A | A
A
C
A | A
A
X
A | | Acetophenone
Acetyl Acetic Acid
Acetyl Acetone
Acetyl Acetonic
Acetyl Benzene | X
B
C
C | <u>x</u> | <u>X</u> X X | X
X
X
X | X
X
X
X | X
X
X
X | A
A
A | <u>X</u> X X X | A
 | Amines, Mixed
Aminobenzene
Aminodimethylbenzene
Aminoethanol
Aminoethylenanolamine | B
X
X
B
B | B
X
C
B | X
X
C | X
X
B
B | X
X
B
B | B
C
X
B | В
В
Х
В | X
C
X
B
B | | | Acetyl Chloride
Acetylene
Acetylene Dichloride
Acetylene Tetra Bromide
Acetylene Tetrachloride | X
B
X
X | X
B
X
X | A
A
A
A | X
B
X
X | X
B
X
X | X
B
X
C
X | — A X | X
B
X
X | —
A
A | Aminohexane
Aminopentane
Aminoxylene
Ammonia Alum
Ammonia-Anhydrous (Liquid | C
C
X
A | | X C X | C
C
X
B
B | C
C
X
B
B | | | C
C
X
B
X | _
_
_
A | | Acetyl Oxide
Acetyl Propane
Acrolein
Acrylic Aldehyde
Acrylonitrile | C
X
B
B
C | - | X
X
A
X | C
X
B
B
X | C
X
B
B | X
X
—
B | -
B
-
X | B
X
B
C | | Ammonia Cupric Sulfate
Ammonia Gas (Cold)
Ammonia Gas (Hot)
Ammonia in Water
Ammoniak | C
A
C
A | —
—
—
—
—
—
—
— | A
X
C
A | A
A
B
A | A
A
B
A | —
А
В
А | A
B
A
A | A
A
B
B
A | —
A
A
A | | Adipic Acid
Aero Lubriplate
Aero Safe 2300
Aero Safe 2300W
Aero Shell IAC | A
X
X
X | XXXX | A
X
X
A | A
X
X
A | A
X
X
A | X
A
X
X
B | X
A
A
X | A
X
X | | Ammoniated Citric Acid
Ammoniated Latex
Ammonium Acetate
Ammonium Alum
Ammonium Bicarbonate | A C A A A | B
B
B
A | | B B B A | 8 B A | B A B A | -
B
-
A | C | | | Aero Shell 7A Grease
Aero Shell 17
Aero Shell 750
Aerozene 50
Agar-Agar | X
X
X
A | X
X
X | A
A
X |
A
A
B
B | A
A
B
B | B
X
B
B | X
X
B | A
X
B | | Ammonium Bifluoride - 10%
Ammonium Carbonate
Ammonium Chloride
Ammonium Chromic Sulfate
Ammonium Dichromate | —
A
A
A | —
A
A
A | —
A
— | B
X
A
A | B
X
A
A | B
A
A | —
A
A | B
A
A | A A A | | Agricultural Lime
Agricultural Spray Oil
Air (Below 300°F)
Air (Above 300°F)
Air | A
X
X | | A
A
A | A
B
X
A | A
B
X
A | A
B
X
A | A
B
X
A | B
B
X
A | —
A
A | Ammonium Diphosphate
Ammonium Fluoride
Ammonium Fluoride Acid
Ammonium Hydrate - 38%
Ammonium Hydroxide | A
B
X
A
X | A
X
B
X | A X X B | A
B
B
A
X | A
B
B
A
X | A
B
X
A | $\frac{A}{X}$ | $\frac{A}{X}$ | $\frac{A}{X}$ | | Air Slaked Lime
Alcohol - Absolute
Alcohol - Aliphatic
Alcohol - Aromatic
Alcohol - Denatured | A
A
C
A | A A A | B
A
A | A
A
C
A | A
A
A
A | A
A
C
A | A
A
C
B | A
A
X
A | —
A
X
A | Ammonium Hydroxide - Con
Ammonium Hyposulfite
Ammonium Metaphosphate
Ammonium Muriate
Ammonium Nitrate | c. X
A
A
C | X
A
A
C | B
A
A
A | X
A
A
A | X
A
A
A | A
A
A
A | A
A
A
A | A
A
A
A | A
A
A
A | | Alcohol - Ethyl
Alcohol - Grain
Alcohol - Methyl
Alcohol - Ether
Alcohol of Vinegar | A
A
X
A | A
A
A
B | B
B
C
B
A | A A C C | A
A
C
C | A
A
C
B | A
A
B
A | A
A
B
B | _
_
_
_ | Ammonium Nitrite
Ammonium Persulfate
Ammonium Phosphate Dibas
Ammon. Phos., Monobasic
Ammon. Phos., Tribasic | A A A A A | A
X
A
A | —
X
A
A | A
X
A
A | A
X
A
A | A
A
A
A | A
B
A
A | A
A
A
A | A
A
A
A | | Aldehyde
Alicyclic Hydrocarbon
Aliphatic Hydrocarbon
Aliphatic Naptha
Alkazene | C
X
X | X
X
X | X
A
A
A
B | X
B
A
C
X | X
B
A
C
X | C
X
B
X | X
X
X | C
X
B
X | A
 | Ammonium Phosphate
Ammonium Rhodanate
Ammonium Salts
Ammonium Sulfate
Ammonium Sulfide | B
A
A
A | A
A
B
B | | A
A
A
A | A
A
A
A | A A A A | A
A
A
A | A A A A | A
A
A
A | | Altomaleic Acid
Allyl Alcohol
Allyl Aldehyde
Allyl Bromide
Allyl Chloride | B
A
B
X | _
_
x | A
B
A
B | C
A
B
X | C
A
B
X | B
A
X | | B
A
B
X | —
—
X
A | Ammonium Sulfite Ammonium Thiocyanate Ammonium Thiosulfate Amoil Amyl Acetate | A
A
X
C | A
A
X
C | A
A
X
X | A
A
X
X | A
A
X
X | A
A
X | —
A
X
B | A
A
X
X | A
A
A
A | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | |--|------------------|-----------------------|-------------------|-----------------------|-----------------------|-----------------------|---------------------------------------|-----------------------|--------------------|-------------------------|---|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------| | Amyl Acetic Ester
Amyl Acetone
Amyl Acid Phosphate
Amyl Alcohol
Amyl Amine | C
X
B
C | X
X
X
B
X | X
X
X
B | X
X
X
B
C | X
X
X
B
C | X
X
X
A
X | B
X
X
A
X | C X X A C | A
X
A
X | ASTI | | X
X
X
X | X
X
X
X | A
A
A
A | A
A
B
A
B | A
A
A
B | B B B B X | X
X
X
X | CBCX | | | Amyl Borate
Amyl Bromide
Amyl Carbinol
Amyl Chloride
Amyl Chloronapthalene | XXBXX | ××× | A
B
A
X | A
X
A
X
B | A
X
A
X
B | AXBXX | X
C
X | A X A X C | X X X | Aure
Auto
Auto | ntic Dominion F
ix 903R Mobil
matic Transmission Fluid
mative Brake Fluid
tion Gasoline | X
B
X
X | X
X
A
X | A
A
X
A | AAACA | A
A
C
A | 08888 | X
X
A
X | X
X
C
B
X | | | Amyl Ether
Amyl Hydrate
Amyl Hydride
Amyl Iodide
Amyl Napthalene | X
A
X
X | X
X
X | X
A
X
A | C
B
A
X | C
B
A
X | X
B
B
X
X | X X X X X X X X X X | C
B
X
X | _
_
x | Bana
Bard | ng Soda
ana Oil | C
A
X
A | A
X
X
A | C
A
X
A | X
A
X
A | X
A
X
B
A | X
A
X
A | C
A
B
X
A | ACXA | A X A | | Amyl Oleate
Amyl Phenol
Amyl Phthalate
Amylene
Anderol L774 (Diester) | X
X
X
X | X
X
X
X | X
A
C
A | B
X
B
B | B
X
X
B
A | X
X
X
X | X
X
X
X | X
X
X
X | X
X
X | Barit
Barit
Barit | um Chloride
um Hydrate
um Hydroxide
um Monohydrate
um Monosulfide | A A A A | A
A
A
A | A
A
A | A A A A | A
A
A
A | A A A A | A
A
A | A A A A | A
A
A | | Anderol L826 (Diester)
Anderol L829 (Diester)
Anethole (Anethol)
Ang-25 (Glyceral ester)
Ang-25 (TG749) (Diester base) | X
X
B
X | X
X
B
X | A
A
B
A | B
B
X
B
B | A
A
X
B
B | X X X B X | X
X
A
X | X
X
B
X | X
X
A
X | Bariı
Bariı | um Octahydrate
um Sulfate
um Sulfide
c Iron Sulfate
Il D | A
A
A
X | A
A
B
A
X | A A A | A A A A | A
A
A
A | A A A B | A A X | A A X |
 A | | Anhydrous-Ammonia
Anhydrous Hydrazine
Anhydrous Hydrogen Fluoride
Aniline, Aniline Oils
Aniline | X
X
X
X | <u>x</u> x x x | X
X
A
C | B
X
X
X | B
X
X
X | ABXCC | A
B
A
B
B | X B X C C | A A A | Belt Beng | Sugar Liquors
Oil
Ial Gelatin
aldehyde | A
A
A
X | A A X | A A X | A
A
B
X | A
A
B
X | A A B X | A A B | 44 | A A A A | | Anılıne Chloride
Aniline Dyes
Aniline Hydrochloride
Aniline Salts
Animal Fats | B
B
B
X | B
C
X | B
A
B
B | CCBCA | C C B C A | X B X X B | B
A
B
B
C | X
B
X
B | A A | Benz
Benz | ene
ene Carbanal
ene Carboxylic Acid
ene Methylal
ene Sulfonic Acid | X
X
B
X | $\frac{x}{x}$ | A
X
B
X
A | C X X C | C
X
X
C | X
X
A
X
A | X
B
B
C | X
X
A
X
A | A A A | | Animal Gelatin
Animal Glye
Animal Glycerin
Animal Grease
Animal Oils | A
B
X
X | ACXXX | A
A
A
A | 4444 | A
A
A
A | A A BB | A
B
C
X | A A C B | A | Benz
Benz
Benz | | X
X
X
X | X
X
X
X | A
A
X
X | X
A
A
X | X
A
A
X | CBBXX | B
X
X
X | CXXX |
 -
 A
 A | | Anise Camphar
AN-0-3 Grade M
AN-0-6
AN-0-366
AN-VV-0-3666 | X
X
X
X | X
X
X
X | B
A
A
A | X
A
A
A | X
A
A
A | X B B B B | X
X
X
X | X
B
B
B | | Benz
Benz | rine Solvent
cochloride
roic Acid
oic Aldehyde
ol | X
C
X | X
X
X
X | A
A
X
A | A
X
X
C | A
X
X
X
C | B
C
X
X | X
A
X
B
X | X
X
X
X | A A A | | Ansul Ether
Ant Oil
Antichlor
Antimonic Chloride
Antimonous Chloride | X
X
A
X | X
X
X | X
A
A | C
X
A
X
B | B
X
A
X
B | X C A X | C
A
A
X
A | X
B
A
X | A A A | Benz
Benz
Benz | ol Hydride
oline
ophenol
ophenone
otrichloride | X
X
X
X | X
X
X
X | X
A
X
A | X
X
X | X
X
X | X
B
X
X | B
X
X
B | X
X
X | A
X
A
X | | Antimony Chlorides
Antimony Pentachloride
Antimony Trichloride
Apple Acid
Aqua Ammonia | $\frac{1}{X}$ | X
B
B | A
A
C | B
X
B
B | B
X
B
B | x cв | A
X
A
X | — X
В
В | × × | Benz
Benz
Benz | oyl Chloride
yl Acetate
yl Alcohol
yl Benzoate
yl Chloride | X
X
X
X | X
X
X
X | B
X
A
A | X
X
X
X | X
X
X
X | X
X
B
X | X
X
B
X | X
B
B
X
X | | | Aqua Regia
Arachidonic Acid
Argon
Arochlor
Arochlor 1243 | X
X
X
X | ×××× | B
A
A | XBCCC | X B C C C | XXXX | C A C B | В
Х
Х | > | Bibor
Bicar
Bichl | la Oil
rate of Soda
bonate of Soda
oride of Mercury
romate of Soda | X A A B | X
A
B | B
A
A | X B A A | X
B
A
A | X A A B | C A A A | A A A C |
 A
 | | Arochlor 1254
Arochlor 1260
Aromatic Hydrocarbons
Aromatic Fuel 50%
Aromatic Spirits | X
A
X
X | X
A
X
X | A
A
A
A | XACBC | X
A
C
A
B | X
A
X
X | <u>В</u> <u>X</u> <u>X</u> | X
A
X
X | | Biph:
Birch | enýl Oxides
enyl Phthalate | X
X
X
A | X
X
X
A | X
C
C
B
A | X
X
X
A | X
X
X
A | X
X
X
A | X
X
C
A | X
X
X
A | X
X
X
A | | Aromatic Tar
Aromatic Vinegar
Aro-Tox Spray
Arquads
Arsenic Acid | X
X
A
B | X
X
B
A | A
A
A | C C C A A | B
C
A
A | BCA | | X
B
A
A | | Bism
Black
Black | uth Subcarbonate
uthyl Carbonate
< Ash
< Liquor
<
Liquor-Waste | A
A
B
X | A
A
X | A
A
A
A | A
A
B
A | A
A
B
A | A
A
A
B | A
A
A
X | AAAC | A A A A | | Arsenic Butter
Arsenic Chloride
Arsenic Trichtoride
Artificial Vinegar
Askarel | X
X
B
X | X
X
X | X
X
A
A | C
C
B
B | C
C
B
B | A A C X | X
X
X
X | X
X
X
B
X | | Black
Bland
Blast | k Point 77
k Sulfate Liquor
c Fixe, Synthetic
t Furnace Gas
ch Liquor | C
B
A
X | C
B
A
X | A
A
A
A | A
B
A
X | A
B
A
X | C
B
A
B
X | A
B
A
C
A | C
B
A
X | —
A
A
A | | Asphalt, Hot
ASTM Ref Fuel A
ASTM Ref Fuel B
ASTM Ref Fuel C
ASTM Oil #1 | X
X
X
X | X
X
X | A'
A
A
A | C
A
A
B
A | C
A
A
A | XACCB | X
X
X
X | X
X
X
B | <u>×</u>
_
_ | Blead
Blow
Blue | ch Solutions
ching Powder
n Linseed Oil
Copperas
Jack | X
C
C
C | X
X
C
C | A
A
A
A | X
C
A
A | X
C
A
A | C
X
B
A
A | A
A
B
A | A
A
B
A | A
A
A
A | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | CSM | XLPE | |--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------| | Blue Salts
Blue Stone
Blue Vitrol
Boghead Naptha
Boiled Linseed Oil | A
C
C
X
X | A
-
X
X | A A A A | A
A
A
A | A
A
A
A | A A C B | A
A
X
B | A
A
C
B | A
A
— | | Boletic Acid
Bone Oil
Bone Tar
Boracic Acid
Borax | 8
-
A
B | C — A B | —
A
A
A | X
A
A
B | X
A
A
A
B | A A | —
—
—
A
A | —
X
X
A | | | Borax Decahydrate
Bordeaux Mixture
Boric Acid
Boran Fluids (HEF)
Brake Fluids—Non-petroleum | A
A
A
X | —
A
A
X
A | A
A
A
A | A
A
B
C | A
A
B
C | A
A
A
X
B | A
A
A
X
A | A
A
A
X
B | A
A
A | | Brandol
Brandy
Bray GG-130
Brayco 719-R (VV-H-910)
Brayco 885 (MIL-L-6085A) | C
A
X
B
X | | A
B
A
X
A | C
A
B
C
B | C
A
C
B | C
A
X
B
X | B
A
X
A | A
A
X
B
X | —
A
— | | Brayco 910
Bret 710
Brine
Brom-113
Brom-114 | A
A
X | B
B
A
X | X
X
A
B | B
B
C
B | B
B
A
C
B | В
В
А
В | A
A
X | A
A
A
B | A
A
— | | Bromallyene
Bromine—Gas
Bromine—Anhydrous
Bromine Trifluoride
Bromine Water | X
X
X
X | X
X
X | B
B
A
X
A | X
X
X | X
X
X | X
X
X
B | X
C
X | X C C X A | | | Bromobenzene
Bromochloromethane
Bromochlorotrifluoroethane
Bromoethylene
Bromomethane | X
X
X
C | X
X
X | B
X
A
B | X
X
X
C | X
X
X
C | X
X
X
X | X
B
X
C
A | X
C
X
X | X
X
X | | Bromopentane
Bromotoluene
Bronzing Liquid
Brown Acetate
Bruccite | X
C
B
A | X
X
— | B
B
X
X
B | X
X
X
B
B | X
X
X
B
B | X
X
B
B | X
X
B
A | X
C
A
A | X
X
A
A | | Budium
Bunker C
Bunker Oil
Burnt Alum
Burnt Lime | X
X
A | X
X
A | —
A
A | —
A
A
A | A A A A | B
X
A | X
X
A
A | X
X
A | X
X
A | | Burnt Potash
Burow's Solution
Butadiene
Butanal (Butal)
Butane | A
X
X | | —
В
Х
А | B
B
X
X
A | B
X
X
A | A
B
B
C
B | —
С
В
С | —
В
С
А | _
A
_ | | Butane 2, 2-dimethyl
Butane 2, 3-dimethyl
Butanoic Acid
Butanol (Butyl Alcohol)
Butanone | X
X
C
A
X | C
C
A
X | A
C
A
X | A
C
A
X | A
A
C
A
X | B
B
C
A
X | X
X
C
B
A | B
B
C
A | | | Butarol
1-Butene
1-Butene, 2-Ethyl
Butoxyethanol
Butter | A
X
X
X | X
X
X | A
A
C
A | B
A
B
A | В
—
А
В
А | B
A
C
B | X
X
A | X
X
B
B | | | Butter of Antimony
Butter of Tin
Butter of Zinc
Butyl Acetate
n-Butyl Acetate | A
B
X
C | | A
A
X
X | B
A
B
X | B
A
B
X | A
B
X
X | A
B
A
B | A
A
X | | | Butyl Acetate Ricinoleate
Butyl Acetoacetate
Butyl Acetyl Ricinoleate
Butyl Acrylate
Butyl Alcohol | X
C
X
A | X
X
X
A | X
X
A
X
A | X
X
X
A | X
X
X
A | X
X
X
A | X
C
X
A | X
C
X
A | XXX | | n-Butyl Alcohol
Butyl Alcohol, Secondary
Butyl Aldehyde
Butyl Amine
Butyl Benzene | A
X
C
X | A X X | A
X
X
A | B
A
X
B | B
A
X
B
X | A
C
X | A
A
B
X | A
C
C
X | A
A
X | | Butyl Benzoate
Butyl Benzyl Phthalate
Butyl Bromide
Butyl Butyrate
n-Butyl, n-Butyrate | X
X
X
X | X
X
X
X | A
C
B
X
A | X
X
X
X | X
X
X
X | X
X
X
X | B
X
X
X | X
X
X
X | X
X
X
X | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | CSM | XLPE | |---|----------------------------|--------------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------|-----------------------| | Butyl Carbitol
Butyl Cellosolve
Butyl Cellosolve Adipate
Butyl Chloride
Butyl Ether | X
X
X
X | X
X
X
X
X | A
X
B
A
X | A
B
X
X
B | A
B
X
X
B | B
C
X
X | A
A
B
X
C | A
B
X
X | A
X
X
X
A | | Butyl Ethyl Acetaldehyde
Butyl Ethyl Ether
Butyl Formate
Butyl Hydrate
Butyl Hydride | X
X
X
A | X
X
X | X
X
X
A | X
B
X
A | X
B
X
A | X
X
A
B | X
X
A
C | X
B
X
A | X
X
A | | Butyl Hydroxide
Butyl lodide
Butyl Methyl Ketone
Butyl Oleate
Butyl Oxide | A X X X | А
Х
Х | A
X
A
C | X
X
X
A | A X X A | А
Х
Х
В | A X B | A
X
C | A
X
— | | Butyl Phthalate
Butyl Stearate
Butyl Tertiary Alcohol
Butylene
Butyraldehyde
Butyric Acid | X
X
A
X
X
C | X
X
X
X | CABAXC | B A B X C | ВАВХС | XACCC | BAXBC | XAXCC | A A A A | | Butyric Alcohol
Butyric Anhydride
Butyrone
Butyronitrile
Cadium Acetate | A
C
X
X | $\frac{-}{x}$ | $\frac{-}{x}$ | B
C
X
X | B
C
X
X | $\frac{B}{X}$ | —
X
A
X | —
В
Х
— | $\frac{-}{x}$ | | Cadmium Cyanide
Cadmium Salts
Cajeputene
Cake Alum
Calamine | X
 | | —
A
A | | CAB | A X A B | <u>x</u> _ | A
X
A | —
—
— | | Calcine Liquor
Calcium Acetate
Calcium Aluminate
Calcium Bichromate
Calcium Bisulfate | < < < | X A | X | A B A A | A B A A | B A | A A | XACA |
 -

 A | | Calcium Bisulfite
Calcium Carbonate
Calcium Chlorate
Calcium Chloride
Calcium Fluorophosphate | C A A A | —
A
A | A A A A A | A
A
A | 4444 | A A A A | CAAA | A
A
A |
 A
 A
 | | Calcium Hydrate
Calcium Hydroxide
Calcium Hypochlorite
Calcium Monoxide
Calcium Nitrate | A
C
A | A
A
A | A
A
A | A
C
A | A A C A A | A
A
X
A | A
A
B
A | B
B
A
A | A
A
A
A | | Calcium Oxide
Calcium Oxychloride-15%
Calcium Silicate
Calcium Salts
Calcium Silico-Aluminate | A
C
A
A
B | A
—
A | A
A
A | A
C
A
A | A C A A X | A X A X | A
A
X | A
A
A
X | A
A
X | | Calcium Sulfate
Calcium Sulfhydrate
Calcium Sulfide
Calcium Sulfite
Caliche | A
A
A
B | A
A
A | A
A
A
A | A
A
A
C | A
A
A
C | A
B
B | A A A | A
A
A
A | A A A | | Caliche Liquors
Calx
Candol
Cane Sugar Liquors
Caprilic Acid | B
A
X
A
C | A
X
A | A
A
A | C
A
A
C | C A A A C | 8
A
B
A | A
X
A | A
A
X
A
B | A
X
A | | Caproic Aldehyde
Caproxyl Alcohol
Caproyl Alcohol
Caproyl Hydride
Capryl Acetate | X
X
B
X | $\frac{\overline{x}}{x}$ | X
B
A
X | X
A
A
X | X A A X | C X B B | X
A
X | X
A
B
A | <u>x</u>
_ | | Capryl Alcohol
Caprylic Acid
Caprylic Alcohol
Caprylic Aldehyde
Carbamate | B
C
B
X | | B
B
X
A | A
C
A
X
C | A C A X C | <u>В</u>
В
Х
В | C
A
X
B | A
B
A
X
B | | | Carbamide
Carbazotic Acid
Carbinol
Carbitol
Carbitol Acetate | A C A X | _
A
X | A C A | B
C
A
B
C | B C A B C | B
C
A
B | 8
8
8 | A
A
B
B | _
_
_ | | Carbolic Acid
Carbon BiSulfide
Carbon Dioxide (Wet or Dry)
Carbon Disulfide
Carbon Disulphide | X
X
B
X | <u>х</u>
<u>В</u> | A
A
B
A | X
C
A
C
C | XCACC | C
X
B
X | C
X
B
X | C X B X X | A
-
- | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | |--|-----------------------|---------------------------------------
-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------------|---|-----------------------|------------------|------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|------------------| | Carbon Monoxide
Carbon Monoxide (Hot)
Carbon Tetrachloride
Carb. Tetrafluoride (Freon 14)
Carbonic Acid | B
C
X
X
A | В
—
X
A | A
A
X
A | A
C
X
X
A | A
C
X
X
A | A
C
X
X
A | A
C
X
B
A | A
B
X
X
A | A
A
A
A | Chloropropylene
Chloropropylene Oxide
Chlorosulphonic Acid
Chlorothene
Chlorotoluene | X
X
X
X | X
X
X
X | X
X
A
A | X
X
X
X | X
X
X
X | X
X
X
X | X
B
X
X | X C C X X | X
X
X
X | | Carbonic Anhydride
Carboxybenzene
Casein (Casymen)
Casing Head Gasoline
Castor Oil | A
A
X
B | <u>A</u> <u>X</u> _ | A
A
A | A
A
A | A
A
A | A
B
A
A | $\frac{A}{A}$ | A
X
A | A
A | Chlorotrifluoroethylene
Chlorox
Chrome Alum
Chrome Ammonium Alum
Chrome Plating Solutions | X
X
A
A
X | ×
×
-
x | X
A
—
A | X
X
A
A
X | X
X
A
A
X | X
B
A
A
X | Х
В
—
х | X
B
C | X
-
-
x | | Caustic—Baryta
Caustic—Lime
Caustic—Potash
Caustic—Soda
Cellosize | A
A
B
A
X | A A | A
C
B | A C C _ | A
A
C
C | A
B
B | A
A
B
A | A
A
B
— | A A A | Chromic Acid to 25%
Chromic Acid over 25%
Chromicoat
Chromic Oxide
Chromium Ammonium Sulfate | X
X
X
X
A | X
X
X
X | A | X
X
X
X
A | X
X
X
A | XXXX | A C X C X | A
A
X
B
X | | | Cellosolve
Cellosolve Acetate
Cellosolve Butyl
Celluguard
Cellulose Acetate | X
X
A
B | X
X
A
— | X
X
A
C | X
X
X
A
B | X
X
A
B | X
X
A
B | B
B
B
A | X
X
A | A
A
A | Chromium Potassium Sulfate
Chrysolepic Acid
Cinene
Circo Light Process Oil
Circosol 2XH | A
C
X
C | X
X
C | A
A
A | A
C
C
A
A | A
C
C
A
A | A C X B | X
B
X
C | X
A
X
B | | | Cellulube Abu
Cellul. 90,100,150,220,300,500
Cellutherm 2505A
Cetane (Hexadecane)
Ceylon Gelatin | X
X
X
A | X
X
X
— | 8
A
A
— | X
X
B
A
B | X
X
A
B | X
X
X
B
B | A
X
X | X
X
B | A
X
— | Citric Acid
Citric Acid—Ammoniated
Citrus Oils
Cty Svc Kool Mtr-AP Gear Oil 140
City Service Pacemaker #2 | A
X
X
X | A
X
X | A
X
A | B
C
A
A | B
C
A
A | A
B
X
B
B | A
B
X
X | A
X
B
X | A
X
X | | Chile Niter (Nitre)
Chile Nitrate
Chile Salt Peter
China Bean Oil
China Wood Oil (Tung Oil) | В
В
Х
Х | | A
A
B
B | C
C
A
A | C C C A A | 8
8
8
8 | A
A
C
C | A
A
B
B | —
—
—
A | City Service #65.#120.#250
Cleaners Naptha
Coal Oil
Coal Tar—Bituminous
Coal Tar—Creosote | X
X
X
X | X
X
X
X | A
A
A
A | A
B
A
B
A | A
B
A
B
A | B X B C B | X
X
X
X | X
X
C
C
B | X
X
X
X | | Chinese Bean Oil
Chinese Gelatin
Chinese Wood Oil
Chloracetic Acid
Chloride of Lime | X
A
X
X
C | $\frac{x}{x}$ | <u>В</u>
В
Х
А | A
B
A
X
C | A
B
A
X
C | B
B
X
X | C
C
B
A | <u>В</u>
В
Х
А | A - - | Coal Tar Naptha
Cobalt Chloride (2N)
Cobalt Chloride
Coconut Oil (Butter)
Cod Liver Oil | X
A
A
X | X
A
X
X | A A A A | X
A
A
B
B | X
A
A
B | XAABB | XCAAA | Х
А
В
В | X
A
A | | Chlorextol
Chlorinated Diphenyl
Chlorinated Lime—35%
Chlorinated Salt Brine
Chlorin Solvents (Wet or Dry) | X
C
B
X | $\frac{x}{x}$ | A A A A | B
B
C
X | B
B
C
X | B
C
X | X
A
X | X
B
A
X | X | Coke Oven Gas
Cologne Spirits
Colonial Spirit
Coliche Liquors
Columbian Spirits | C A A A A | A
A
B
A | A B C C | C A A B A | C A A B A | CAAAA | X A B B B | A A A A | _
_
_ | | Chlorinated Tar Camphor
Chlorine (Dry)
Chlorine (Wet)
Chlorine Agueon
Chlorine Dioxide | X
C
X
X | X X X X X X X X X X | X
A
X
A | X
C
X
X | X
C
X
X | X
C
X
X | X
C
X
C | X
B
X
X
B | X A A | Colza Oil
Common Alum
Convelex 10
Coolanol (Monsanto)
Coolanol #45 (Monsanto) | X
A
X
X | X
A
X
X | A
A
X
A | B
A
X
A | B
A
X
A | B
A
X
A
A | A A X X | B
A
X
B
B | —
X
— | | Chlorine Gas, Dry
Chlorine Gas, Wet
Chlorine Peroxide
Chlorine Trifluoride
Chlorine Water—Sat. | C
X
X
X | XXXX | B
C
A
X | C
X
X
C | C X X C | C
X
X
X | X
C
X
C | X
X
B
X
B | A A A X | Copper Acetate
Copper Arsenate, Basic
Copper Chloride
Copper Cyanide
Copper Hydrate | A A A C | X
A
A | X
A
A
C | B
A
A
B | B A A A B | B A A B | 4444 | X A A B B | A A A | | Chlorine Water, 3%
Chloroacetic Acid
Chloroacetone
Chloroacetonitrile
Chloroallyene | B
X
X
C
X | $\frac{\overline{x}}{x}$ | A
X
B | B
X
X
C | B
X
C
X | C
X
B
C
X | B
A
X | B
B
X
X | A
A | Copper Hydroxide
Copper Lasur
Copper Nitrate
Copper Nitrite
Copper Sulfate | C C B C C |
 | C
A
A
A | B
A
A
A | B
A
A
A | 4 4 | A A | B
A
A
A | —
A
A | | Chloroazotic Acid
Chlorobenzane
Chlorobenzene
Chlorobenzol
Chlorobromomethane | X
X
X
X | X
X
X
X | A
X
A
A | X
X
X
X | X
X
X
X | X
X
X
X | C
X
X
B | B
X
X
X | X
A
X
A | Copper Sulfide
Copper Ferrous Sulfate
Copra
Corn Oil
Corn Syrup (Sugar) | C
A
X
X
B | —
X
X | A A A A A | A
A
B
A
B | A | 4888 | < < < < | A A B B A |
 A | | Chlorobutadiene
Chlorobutane (Chlorobutanol)
Chloradane
Chlorododecane
Chloroethane | X
X
X
C | X
X
X | A
A
A
A | X
X
B
X
X | X
X
B
X | X
C
X
X | X
X
X
C | C
X
X
X | <u>x</u> x <u>x</u> - | Corrosive Sublimate
Cottonseed Oil
Cresol
Creosote—Wood Tar
Creosote—Coal Tar | B
X
X
X | X
X
X
X | A
A
A
A | A
C
A
A | A
C
A
A | B B X B B | A
X
X
X | А
В
В
Х
В | A
 | | Chloroethanoic Acid
Chloroethanoi
Chloroethyl Alcohol
Chloroethylbenzene
Chloroform | X
C
C
X
X | <u>x</u> _ x | A
B
B
A
A | X
X
X
X | X
X
X
X | X
B
B
X
X | A
A
X
X | B
B
X
X | | Cresols
Cresyl Alcohol
Cresyl Hydrate
Cresylic Acid
Crotonaldehyde | X
X
X
X | X
X
X
X | A
A
A
X | C
C
C
X | CCCX | X
X
X
X | X
X
X | B
B
C
C
X | _
_
_
x | | Chloromethane (Chloromethyl)
O-Chloronapthalene
1-Chloro 1-Nitro Ethane
Chloronated Hydrocarbons
Chloropentane | X
X
X
X | X
X
X
X | B
A
C
A | X
X
X
X | X
X
X
X | X
X
X
X | C
X
X
X | X
X
X | —
X
X
A
X | Crude Oil
Cryolite
Cryolite, 10%
Cryscoat F.H. Rinse
Cryscoat H.C. | X A X X | <u>×</u> × × | A
A
X
X | A
B
B
X
X | A
B
X
X | C
A
X
X | X
B
A
X | <u>×</u> <u>×</u> × | <u>x</u> _ x | | Chlorophenic Acid
0-Chlorophenol
Chloroprene
Chloropropanone
Chloropropane | X
X
X
X | X
X
X
X | B
B
A
X
B | X
X
X
X | X
X
X
X | X
X
X
X | X
X
X
X | X
X
C
X | X
X
X
X | Cryscoat L.T. & S.W.
Crystal Ammonia
Cubic Niter
Cubic Saltpeter
Cubnic | X
X
B
B
B | ×
-
- | X
A
A
A | X
A
C
C
C | XACCC | X A B B B | X | X
A
A | | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | |---|-----------------------|--------------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|--------------------------|---|-----------------------|------------------|------------------|-----------------------|-----------------------|-------------------------------------|-------------------------|-----------------------|--------------| | Cumene
Cupric Acetate
Cupric Arsenate
Cupric Carbonate
Cupric Chloride | X
A
C
B | X A - | A
A
A | X
B
A
A | X
B
A
A | X
B
A
A | X
A
A | X
B
A
A | _
_
A | Dichloroethylene
Dichloroethylether
Dichlorofluoromethane
Dichlorohexane
Dichloroisopropylether | X
X
X
X | ×××× | AXXAC | X
X
X
X | X
X
X
X | X
X
X
X | X
X
X
X | X
X
X
X |
 -
 - | | Cupric Cyanide
Cupric Hydroxide
Cupric Nitrate
Cupric Nitrite
Cupric
Sulfate | A
C
B
C
C | <u>A</u>
 | A
C
A
A | A
B
A
A | A
B
A
A | B A A | A A A | B
B
A
A | A
_
A | Dichloromethane
Dichloropentane
Dichloropropane
Dichlorotetrafluroethane
Dicyclohexylamine | X
X
X
X | ×××× | B
A
B
X | X
X
X
X | X
X
X | X
X
X
X | C
X
X
X | X
X
X
X | | | Cupric Sulfide
Cutting Oil
Cyanomethane
Cyclohexane
Cyclohexanol | C
X
B
X
C | $\frac{\overline{x}}{x}$ | A
X
A
A | A
A
C
B
B | A
A
C
B
B | B
A
X
A | X A X C | A
B
B
X
C | = | Dieldrin in xylene
Dieldrin in xylene & water spray
Dieline
Diesel Oil
Diester Lubricant MIL-L-7808 | X
X
X
X | XXXX | B
B
A
A | X
B
X
A
B | X
B
X
A
B | X
B
X
B
X | X
X
X
X | X
X
C
X | | | Cyclohexanone
Cyclohexatriene
Cyclopentane
Cyclopentanol
Cyclopentanone | X
X
X
X | X
X
X
X | X
A
A
B
X | X
X
B
X | X
X
B
X | | c x x x | XXXX | $\frac{\overline{x}}{x}$ | Diester Syn. Lub. Oil
Diethanol Amine
Diethyl Amine
Diethyl Benezene
Diethyl Carbinol | X
B
B
X
A | X
B
X | A X A B | B
C
X
A | B B C X A | x c x | X
B
X | X C C X A | | | Cymene
p-cymene
DBP
DDT in Deodorized Kerosene
DMF | X
X
X
X | X
X
X
X | A
A
B
A
X | C
X
A
X | C
X
X
A
X | X
X
B
X | X
X
A
X | X
X
X
X | = | Diethyl Carbonate
Diethyl Ether
Diethyl Ketone
Diethyl Oxalate
Diethyl Oxide | XXXCX | × ×× | × × × | X
B
X
B | X B X X B | X C X X C | X
X
B
X | xcx c | | | DMP
DOP
Danforth's Oil
Decahydronapthalene
Decalin (Deklin) | X
X
X
X | X
X
X
X | C
A
A | X
X
A
X | X
A
X | X
C
X | B
X
X | X
C
X
X | | Diethyl Phthalate
Diethyl Sebacate
Diethyl Sulfate
Diethyl Triamine
Diethylene Dioxide | X
X
X
B
X | X
X
X | C
A
X | X
X
X
B
X | X
X
X
B | X
X
X | X
B
X
A | X
C
X
C
X | = | | Decanal
Decane
Decanol (Decyl Alcohol)
Decyl Aldehyde
Decyl Butyl Phthalate | X
X
B
X
X | $\frac{x}{x}$ | X
A
B
X
C | X
B
A
X | X
B
A
X | X
X
X
X | x c x | X
X
A
X | <u>x</u> | Diethylene Ether
Diethylene Glycol
Diethy. Glycol-Dialky Ether
Diethy. GlycMonalkyl Ether
Dieth. GlyMonobutyl Ether | X
A
X
X | X
A
X
X | X
A
X
A | X
A
A
A | X
A
A
A | X
A
X
B | X
A
X
A | X
A
X
A | | | Degreasing Fluid
Dehydrated Alcohol
Deionized Water
Delco Brake Fluid
Denatured Alcohol | X
A
A | X
A
A
A | A
B
X
B | X
A
B
C
A | X
A
B
C
A | X
A
B
B | X A A A | X
A
B
A | X
A
— | Dieth. GlyMonoethyl Ether
Diethylene Oxide
Diethylene Triamine
Difluorodibromomethane
Digallic Acid | X
X
B
X
A | X
X
X
A | A
X
X
A | B
X
B
X
C | B
X
B
X
C | В
Х
Х
А | B
A
B
B | B
X
C
X
A | = | | Detergent Solutions
Developing Fluid (Photo)
Dextron
Dextronic Acid
Dextrose | B
A
X
B | A
X
X | A
A
A | A
A
C
B | A
A
C
B | B A B B | A X A | A
X
B
A | | Dihydroxydiethyl Amine
Dihydroxydiethyl Ether
Dihydroxyethyl Amine
Dihydroxypropane
Dihydroxysuccinic Acid | 8
A
B
A |
 -
 A |
 A
 A | B
A
B
A
B | B A B A B | C |

A
B | C A C A A | - | | Diacetic Acid
Diacetic Ester
Diacetic Ether
Diacetone
Diacetone Alcohol | B
B
B
X
B | X | x | X
X
X
X | X
X
X
X | X
X
B | AB | | | Diisobutyl Ketone
Diisobutylene
Diisodecyl Adipate
Diisodecyl Phthalate
Diisooctyl Adipate | | ××× | ACCC | B
X
X | B
X
X | CXX | В
Х
А
Х | - C X X | - | | Diacetyl Acetic Acid
Diamine (Diamidogen)
Diaminoethane
Diammonium Orthophosphate
Diamylamine | B
B
A
B | _
_
A | C
X
A | X
B
B
A
B | Х
В
В
А | X C A A | A A A | B
A
C | _
_
_
_ | Diisooctyl Phthalate
Di-isoprene
Diisopropanol Amine
Diisopropyl Amine
Diisopropyl Benezene | X
B
B | <u>x</u> | C A A | X C B B X | X C B B X | <u>x</u> <u>x</u> <u>-</u> <u>x</u> | ×
-
x | XXCCX | | | Diamylene
Diamyl Nepthalene
Diamyl Phenol
Diatol
Diazinone | X
X
X
X | X
X
X
X | A
C
A
X | C
X
X
X | C
X
X
X | X
X
X
X | X
X
X
A | X
X
X
X | $\frac{x}{x}$ | Diisopropyl Ether
Diisopropyl Ketone
Dilauryl Ether
Dimethyl Amine
Dimethyl Aniline | X
X
B
X | ××× | x x x | B X B B X | B X B B X | X
X
X | X
X
C
B | C
X
B
X | | | Dibenzyl Ether
Dibenzyl Sebacate
Dibromobenzene
1, 2-Dibromomethane
Dibromomethylbenzene | X
X
X
X | X
X
X
X | C
B
A
B | X
X
X
X | X
X
X
X | X
X
X
X | СВХСХ | X
X
X
X | _
_
_
_ | Dimethyl Benzene Dimethyl Carbinol Dimethyl Ether Dimethyl Formamide Dimethyl Ketal | X
X
X
B | | A
A
X
A | C B A C X | CBACX | X
X
X
C | X
B
X
X
A | X
A
B
X
B | | | Dibutyl
Dibutyl Acetate
Dibutyl Amine
Dibutyl Ether
Dibutyl Phthalate | X
B
X | X
X
X | A
X
B
C
B | A
X
C
B
X | A
X
C
B
X | X
X
C
X | X
X
X
C
A | X
C
C
X | <u>x</u>
_ | Dimethyl Ketone
Dimethyl Methane
Dimethyl Malonate
Dimethyl Phenol
Dimethyl Phthalate | B
X
A
X | x x | X A C | X
A
C
X | X
A
C
X | C
B
A
X | A
X
A
X
B | В
В
Х | | | Dibutyl Sebacate Dicalcium Phosphate Dichloracetic Acid O-Dichlorobenzene p-Dichlorobenzene | X
A
B
X | <u>x</u> <u>x</u> x | B
A
X
A | X
A
X
X | X
A
X
X | <u>X</u> _ X | B
-
X
X | X
A
X
X | = | Dimethyl Phosphite
Dimethyl Sulfate
Dimethyl Sulfide
Dinitrobenze
Dinitrotoluene | A
X
X
X | ××× | X X A B | A X X X | A X X X | A X X X | A
X
X
X | X
X
X | _
_
_ | | Dichlorobutane
Dichloro-difluoromethane
Dichloroethane
Dichloroethanoic Acid
Dichloroether | X
X
B
X | X
X
X
X | A
B
A
X
X | X
B
X
X | X
B
X
X | X
B
X
X | X
B
X
X | <u>X</u> C X | | Dioctyl Adipate
Dioctyl Amine
Dioctyl Phthalate
Dioctyl Sebacate
Dioform | X
X
X
X | <u>X</u> X X | C A B A | <u>X</u> X X | X
B
X
X | X
X
X | <u>В</u>
В
В
Х | X
C
X
X | | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | CSM | XLPE | |--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------| | Dioxane (Dioxan)
Dioxethylene Ether
Dioxolanes
Dipentene
Diphenyl | X
X
X
X | X
X
X
X | X
X
X
A | X
X
C
X | X
X
C
X | X
X
X
X | A
X
B
X | X
X
X
X | _
_
_
_ | | Diphenyl Oxide
Diphenyl Phthalate
Dippel's Oil
Dipropyl Amine
Dipropylene Glycol | X
X
B
A | XXX A | X C A A | X
A
B
A | X
A
B
A | ××× | × × – | X
X
C
A | _
_
_
_ | | Dipropyl Ketone
Dipropyl Methane
Disodium Phosphate
Dispersing Oil #10
Distilled Vinegar | X
X
A
X
A | X
X
A
X
A | X A C A | X
A
X
C | X A A X C | X
A
X
B | X X | X
B
A
X
B | | | Divinyl Benzene
Divinyl Ether
DMP
Dodecanol
Dodecyl Alcohol | X
X
A
A | ×
×
— | A
X
X
B
B | X
B
X
A | X
B
X
A | ×
×
— | X
X
— | X
B
X
A | | | Dodecyl Benzene
Dodecyl Toluene
Douglas Fir Oil
Dow Chemical 50-4
Dow Chemical ET 378 | X
X
X | X
X
A
X | A A X X | X
B
X | X
B
X | X
X
B
X | X
X
A
X | X
X
B
X | | | Dow Chemical ET 588
Dow Corning #3
Dow Corning #4
Dow Corning #5, 11, 33
Dow Corning #44,55,200,220 | X
A
A
A | A
A
A
A | X
A
A
A | C
A
A
A | C A A A A | B
A
A
A | A A A A A | B
A
A
A | | | Dow Corning #510, 550
Dow Corning #704, 705
Dow Corn. #710,1208,4050,6620
Dow Corning #F60,F61,XF60
Dowfume W-40, 100% | A
A
X | A
A
A
X | A
A
A
C | A
B
A
A
X | A
B
A
X | A
A
X | A A A A C | A
A
X | | | Dow Gen Weed Kill (phen. base)
Dow Gen Weed Kill (wat'r base)
Dowguard
Dowper (perchloroethylene)
Dow Purifloc C-31 | X
X
A
X
A | X
X
A
X | X
X
A | X
B
A
X
A | X
B
A
X
A | X
X
A
X
A | X
X
A
X | X
X
A
X | _ | | Dowtherm A
Dowtherm E
Dowtherm 209 50%
Dowtherm Oil
Dowtherm S.R1 | X
—
— | ×
- | A
A
X
A | X
C
A | X
C
A | X
B
— | X
X
A | X
X
— | | | Drinking Water
Drycleaning Fluids
Drycleaning Solvent
Drycid
DTE light oil | A
X
C
X | X
X
X | A
A
—
A | A
C
X
A | A C X A | B
X
C
B | A X X — X | A X X X X | A
A
X | | Dutch Oil
Dutch Liquid
Earth Pitch
Elco 28-EP Lub.
Epichlorohydria | X
X
X
X | X
X
X
X |
X
X
A
A
X | X
X
A
A | X
X
A
A
X | X
B
C
X | X
X
X
X
B | X
X
B
X
C | | | Epoxy Resins
Epsom Salts
Esam-6 Fluid
Essence of Myrbane
Esso Fuel 208 | | A
A
X | X
A
X
A | —
—
X
A | A | A
B
X
B | A
A
C
X | A
B
X
C | | | Esso Motor Oil ND
Esso Transmiss. Fluid Type A
Esso WS3812 (Mill-7808-A)
Esso XP90-EP Lub.
Esstic 42, 43 | X
X
X
X | X
X
X
X | A A A A | A
A
A
A | A A A A A | C
B
X
B | X
X
X
X | X
X
X
B
X | | | Ethamine
Ethanal
Ethanamide
Ethane
Ethane Nitrile | B
C
C
X
B | | X
X
B
A
X | X
X
B
A
C | X
X
B
A
C | X
C
B
B
A | A
A
X
A | C C B B B | | | Ethanedioic Acid
Ethanethiol
Ethanoic Acid (Acetic Acid)
Ethanol
Ethanolamine | B
X
A
B | —
Х
—
В | C
B
B
C | B
X
A
B | B
X
A
B | B
X
B
B | A X A B | A
X
A
B | _
_
_
_ | | Ethanbyl Chloride
Ether
Ethine
Ethocel
Ethoxyethane | X
X
A
B
X | X
X
B
X | B
X
A
X | X
B
A
B
B | X
B
A
B
B | X
X
B
C | C
X
A
B
X | X
B
B
C | | | | NR | SBR | FPM | NBR | NBRII | CR | EPDM | CSM | XLPE | |--|-----------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------| | Ethoxyethanol
Ethyl Acetate
Ethyl Acetic Acid
Ethyl Aceto Acetate
Ethyl Acrylate | XXCCX | x X C X | B
C
X | CXCXX | C
X
X
X | C X C X | A
B
C
B
B | В
В
X
X | _
_
_ | | Ethyl Alcohol
Ethyl Aldehyde
Ethyl Aluminum Dichloride
Ethyl Amine
Ethyl Benzene | A
C
X
B | $\frac{-}{x}$ | B
X
B
X
A | A
X
X
X | A
X
X
X | B
C
X
X | A
A
X
A | A
C
X
C | = | | Ethyl Benzoate
Ethyl Bromide
Ethyl Butanoate
Ethyl Butanol
Ethyl Butyl Acetate | X
B
X
A | $\frac{x}{x}$ | A
X
B
X | X
X
A
X | X
X
X
A
X | $\frac{x}{x}$ | B
X
X | X
X
A
X | _
_
_ | | Ethyl Butyl Alcohol
Ethyl Butyl Amine
Ethyl Butyl Ketone
Ethyl Butyraldehyde
Ethyl Butyrate | A
B
X
X | | X
X
B | A
B
X
X | A
B
X
X | | | A
C
X
X | _
_
_
_ | | Ethyl Butyric Acid
Ethyl Caprylate
Ethyl Caprylic Ester
Ethyl Cellosolve
Ethyl Cellulose | X
X
X
B | ×
×
× | C
X
B
A | X
X
C
B | X
X
C
B | X
X
C
B | X
X
A
B | X
X
B
B | = = | | Ethyl Chloride
Ethyl Chlorocarbonate
Ethyl Chloroformate
Ethyl Cyanide
Ethyl Cyano Acetate | B
X
A
A | | A A X | 0 x x | x x = C = C | B C C B A | C — A A | BCCX | = = | | Ethyl Cyclopentane
Ethyl Diacetate
Ethyl Dichloride
Ethyl Dimethyl Acetate
Ethyl Ether | X
B
X
X | <u> </u> | A
B
X | A
X
X
B | A
X
X
B | X
X
X
X | X
X
B
X | X
X
X
B | | | Ethyl Formate
Ethyl Formic Ester
Ethyl Hexanol
Ethyl Hexoic Acid
Ethyl Hexyl Acetate | X
X
C
X | ×
×
— | C
A
X | X
C
C
X | X
C
C
X | В
В
X
— | B
B
A | X
X
B
B | = | | Ethyl Hexyl Alcohol
Eth. Hex. Diphanyl Phosphate
Ethyl Hexyl Phthalate
Ethyl Hydrate
Ethyl Hydroxide | A
X
X
A
A | X
X
A | В
Х
В | A
X
X
A
B | A
X
X
A
B | X
X
A
B | | A X A | _
_
_ | | Ethyl lodide
Ethyl Isobutyl Ether
Ethyl Isobutyrate
Ethyl Mercaptan
Ethyl Methyl Carbinol | X
X
X
A | X
X
X | B
X
X
B
A | X
X
X
X | X
X
X
X | X
X
X
A | C
X
X | X
B
X
X | = | | Ethyl Methyl Ketone
Ethyl Orthosilicate
Ethyl Oxalate
Ethyl Oxide
Ethyl Pentachlorobenzene | X
C
A
X | X
A
X
X | X
A
X
A | X
A
X
B
X | X
A
X
B
X | X
A
X
X | A
A
X
X | X
A
X
B
X | = | | Ethyl Phthalate
Ethyl Propionate
Ethyl Propyl Ether
Ethyl Propyl Ketone
Ethyl Propyl Oxide | X
X
X
X | X
X
X
X | C
X
X
X | X
C
X
C | X
C
X
C | X
X
X
X | X
X
X
X | X
X
8
A
B | = | | Ethyl Silicate
Ethyl Sulfate
Ethyl Sulfohydrate
Ethylene
Ethylene Alcohol | C
X
X
A | | A
X
B
A
A | A
X
X
B
A | A
X
X
B
A | A
X
X
A | A
X
X
C
A | A
X
A
A | = | | Ethylene Bromide
Ethylene Chloride
Ethylene Chlorohydrin
Ethylene Diamine
Ethylene Dibromide | X
C
B
X | X
X
B
B | B
B
X
B | X
X
B
X | X
X
B
X | X
X
B
A | C
C
A
C | X
X
B
A
X | | | Ethylene Dichloride
Ethylene Glycol
Ethy. Gly. Monobutyl Ether
Eth. Gly. Monoethyl Eth. Ace
Eth. Gly. Monomethyl Ether | X
A
X
C
X | X
A
X
X | B
C
A
X | X A B C C | X
A
B
C
C | X
A
C
X
A | B
A
A
B | X
A
B
X
B | | | Ethylene Monoacetate
Ethylene Oxide
Ethylene Trichloride
Ethylic Acid (See Acetic Acid)
Ethylic Alcohol | C
X
X
A | X
X
A | A
C
A
B | C
X
X | C
X
A | XXX | A
X
X
A | X
X
A | | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | CSM | XLPE | |---|-----------------------|------------------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|-------------| | Ethylic Ether
Ethylidene Chloride
Ethylidene Dichloride
Ethylidene Perchloride
Ethyl Morph, Stan. Octoate | X
X
X
X | X
X
X
X | X
X
X | B
X
X
X | B
X
X
X | C
X
X
X | X
X
X
B | C
X
X
X | | | Ethyne
Exsiccated Alum
Ex-Tri
Exxon 2380 Turbo Oil
F-60 Fluid (Dow Corning) | A A X X A | AXXA | A A A A | A A X X A | AAXXA | B A X X A | A A X X A | B
X
X
A | | | F-61 Fluid (Dow Corning) Fat Lime Fatty Acids FC-43 Heptaco. Fluorotri but. FC-75 Fluorocarbon | AAC | A X X | A
A
B | A A B A A | A A B A A | A A B A A | A | A
A
A
A | | | Feran
Fermentation Amyl Alcohol
Ferric Acetate
Ferric Bromide
Ferric Chloride | B
A
X
A | X
A | A
X
A | B A X A A | B
A
X
A
A | B
X
A | A X A | —
A
A
A | | | Ferric Dichloride
Ferric Hydroxide
Ferric Nitrate
Ferric Perchloride
Ferric Persulfate | A
C
A
A | $\frac{A}{A}$ | A
C
A | A B A A A | A
B
A
A | A
A
B
A | A
A
— | A
B
A | | | Ferric Salts Ferric Sesquichloride Ferric Sesquisulfate Ferric Subsulfate Ferric Subsulfate Ferric Sulfate | A
A
A
A | A
A
A
A | A
A
A
A | A
A
A
A | A
A
A
A | B
A
A | A A A | A
A
A
A | | | Ferric Trichloride
Ferric Trisulfate
Ferriferous Chloride
Ferriferous Persulfate
Ferrous Acetate | A
A
A
X | <u>A</u> | AX | A A A X | A A A X | B
A
B
A | A
_
_
X | A
—
—
A | | | Ferrous Ammon. Sulfate-30%
Ferrous Chloride
Ferrous Hydroxide
Ferrous Nitrate
Ferrous Sulphate | A
C
A
A | | A
C
A | A
B
A | A
B
A | A B A A | —
—
—
A | A
B
A | | | Ferrous Sulfide
Filter Alum
Firedamp
Firwood Oil
Fish Oil | A
X
X | A
X
X | A
A
A | A
A
B
A | A
A
B
A | A
B
X | | A
B
X | _
_
_ | | Flaxseed Oil
Flores Martis
Fluoroboric Acid
Fluorinated Cyclic Ethers
Fluorine (Liquid) | X
A
A
X | X
A
X | A
C
A
B | A A X | A
A
X | B
B
C | B
A
A
C | B — A — X | | | Fluorobenzene
Fluorocarbon Oils
Fluorochlorocethylene
Fluorolube
Iuoromethane | <u>X</u> X X | <u>x</u> <u>x</u> <u>x</u> _ | A
X
B | X
C
X | X | X
X
A
X | X
A
X
A | X
X
A | | | Fluosilicic Acid
Formaldehyde
Formalin
Formamide (Formylamine)
Formic Acid (Formylic Acid) | A
B
B
A
X | C
A
X | A
A
X
C | B
B
B
C | B B A C | 8
8
8
8 | B
A
A
B | A
A
A | | | Formic Aldehyde — 40%
Formonitrile
Fraud's Reagent — 10%
Freon 11
Freon 12 | B
B
A
X | C
—
X
X | A A A B | B
X
A
B | 8
8
X
A
8 | B
C
A
B | A
B
B
X
B | A
A
A
C | | | Freon 12 & ASTM #2 0il (50/50)
Freon 12 & Suniso 4G (50/50)
Freon 13
Freon 13B1
Freon 14 | X
X
A
A
X | X
X
A
A | A A A X | A
A
A
X | A
A
A
X | B
B
A
A | X
X
A
A
B | B
B
A
A
X | | | Freon 21
Freon 22
Freon 22 & ASTM #2 0il (50/50)
Freon 31
Freon 32 | X
X
X
B
A | X
X
X
B
A | X
X
B
X
C | X
X
X
A | X
X
X
A | X
X
B
A | X
X
X
A | X
X
B
A | | | Freon 112
Freon 113
Freon 114
Freon 114B2
Freon 115 | X
X
A
X
A | X
B
A
X
A | A
A
B
B | B
B
A
B
A | B
A
B
A | B
A
A
A | X
X
C
X
A | B
B
A
A | _
_
_ | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | CSM | XLPE | |
--|------------------|-----------------------|-----------------------|------------------|------------------|------------------|-----------------------|------------------|------------------|--| | Freon 142B
Freon 152A
Freon 218
Freon 502
Freon BF | A A A X | A
A
A
X | X
A
B | A A B B | A A B B | 444B | 444 | A C A B | | | | Freon C316
Freon C318
Freon MF
Freon PCA
Freon TA | A
A
X
A | A
A
X
B
A | A
A
B
C | A
A
A
A | A
A
A
A | AACAA | A
X
A | A | _
_
_
_ | | | Freon TC
Freon TF
Freon TMC
Freon T-P35
Freon T-WD602 | X C B A C | A
X
B
A
B | A
A
A
A | A A B A B | A A B A B | A | B X B A B | A | | | | Fruit Juice
Fuel Oil
Fuel Oil, Acidic
Fuel Oil, #6
Fuels — ASTM Ref Fuel A | C X X X | |
 A
 A
 A | A | —
A
A
A | A B B X A | X
X
X | A
B
X
X | | | | Fuels, ASTM Ref Fuel B
Fuels, ASTM Ref Fuel C
Fuels, ASTM #1 Oil
Fuels, ASTM #2 Oil
Fuels, ASTM #3 Oil | X
X
X
X | X
X
X
X | A A A A | A
B
A
A | A
A
A
A | ССВВВ | X
X
X
X | XXB C | | | | Fuels, ASTM #4 0il
Fumaric Acid
Fumarole Acid
Fum. Sulf. Acid (20-25% Oleum)
Fuming Nitric Acid | X
B
A
X | X
B
A
X | A A A C | B
C
A
X | A
C
A
X | B
B
A
X | X
A
X
X | B
B
A
X | _
_
_
x | | | Furaldehyde
Furan (Furfuran)
Furfural (Furfurol)
Furfuraldehyde
Furfuryl Alcohol | X
X
X
X | X
X
X
X | X
C
X
X | X
X
X
X | X
X
X
X | CXCCX | A
X
A
B | BXCCX | | | | Furol
Furyl Carbinol
Fusel Oil
Fyrquel A 60
Fyrquel 90,100,150,220,300,500 | X
X
A
X | X
X
X | X
X
A
X | X
X
A
X | X
X
A
X | C
X
A
X | A
X
A
B
A | C X A X X | | | | G.A.J.
Gallic Acid
Gallotannic Acid
Gasoline, Regular
Gasoline, Unleaded | X
A
A
X | X
B
A
X | X A A A A | X
C
A
B | X
C
A
A | X C A B C | X
B
B
X | X
B
A
X | | | | Gasoline, 40% Aromatic
Gasoline, 65 Octane
Gasoline, 100 Octane
Gaultheria Oil
Gelatin | X
X
X
A | X
X
X
A | A A A B A | B
A
X
A | A A X A | 8 B X A | X
X
X
C
A | XXXX | | | | Generator Gas
German Saltpeter
Gibbsite
Girling Brake Fluid
Glacial Acetic Acid | C A A C | AAAC | AACXC | A A B C C | A A B C C | BAABC | CAAAB | BABBC | | | | Glauber's Salt
Gluconic Acid
Glucose
Glue
Glycerin | A
A
A
A | A
A
A | A
A
A | ACAAA | A
C
A
A | A A A A | A
A
B
A | A
B
A
A | | | | Glycerol
Glyceryl Hydroxide
Glyceryl Triacetate
Glyceryl Trioleate
Glycogenic Acid | A
A
B
X | A
A
—
X | A C | A
A
B
C | A
A
B
C | A A C | A A | A A B B | | | | Glycol
Glycol Acetate
Glycol Alcohol
Glycol Butyl Ether
Glycol Chlorohydrin | ACAXC | AX | A A CB | A C B B X | A C B B X | A X B C B | A A A A | A X B B | | | | Glycol Dibromide
Glycol Dichloride
Glycol Ethyl Ether
Glycol Monoacetate
Graham's Salt | XXXCA | ×
×
— | 8
8
8
A | XXCCA | X X C C A | XXCXA | CCAA | X
B
X | | | | Grain Alcohol
Grain Oil
Grease
Green Copperas (Vitrol)
Green Liquor | A
A
X
A | A
X
A | B
A
A
A | A A A A | A
A
A
A | A | A
A
X
A | AACAA | | | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE |] | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | CSM | XLPE | |--|-----------------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|---|--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|---| | Green Sulfate Liquor
Grey Acetate
Gulfcrown Grease
Gulf Endurance Oils
Gulf FR Fluids (emulsion) | A
B
X
X | A X X X | A
X
A
A | A
B
A
A | А
В
А
А | A
B
B
B | A
X
X
X | A
X
X
X | 1111 | | Hydroch.Acid, 38%,30.1BE Hot
Hydroc. Acid, 38%,30.1BE Cold
Hydrochloric Acid, 50%
Hydrochloric Acid, 100%
Hydrochloric Acid, 3 Molar | X
B
A
X
C | X
B
C
X
C | A
A
A
A | X
B
X
X
C | X
B
X
C | X
B
X
C | C
A
C
C
A | C A B X B | | | Gulf FRG Fluids
Gulf FRP Fluids
Gulf Harmony Oils
Gulf Hi-Temp Grease
Gulf Paramount Oils | A
X
X
X | A
X
X
X | A
B
A
A | A
X
A
A | A
A
A | A
X
B
B | A
B
X
X | A
X
X
X | _
_
_ | | Hydrochloric Ether
Hydrocyanic Acid
Hydro-drive MiH50, Pet. Base
Hydro-Drive MiH10, Pet. Base
Hydrofluoric Acid | B
X
X
X | B
X
X | A
A
A
X | C
B
A
A | C
B
A
A | B
C
B
C | C
B
X
X | B
A
X
A | _
_
_
_ | | Gulf Security Oils
Halite
Halothane
Halowax
Hannifin Lube A | X
A
X
X | X
A
X
X
B | A
A
A
A | A
X
X
A | A
X
X
A | B
X
X
A | X
A
X
X | X
A
X
A | _
_
_
_ | | Hydrofluoric Acid, Anhydrous
Hydrofluoric Acid, 10%
Hydrofluoric Acid, 50%, 24BE
Hydrofluoric Acid, 65%
Hydrofluoric Acid, 65% Hot | X
B
C
C
X | X
B
C
C
X | A
X
C | X
B
X
X | X
B
X
X | C B C C C | C
A
B
X | A
A
A
C | _
_
_ | | Hartshorn
Heavy Benzine
Heavy Water
HEF-2 (High Energy Fuel)
Helium | A
X
A
X
A | X
A
X
A | A
A
A | X
A
B
A | X
A
A
B | B
B
X
A | A
X
A
X
A | B
X
A
X
A | _
_
_ | | Hydrof. Acid, 75%, 30.1BE
Hydrofluoric Acid, 75%, Hot
Hydrofluorobaric Acid
Hydrofluorosilicic Acid
Hydrogen Bromide | X
A
A
B | Х
Х
В | X
C
A | X
X
B
X | X
X
B
X | X
X
B
X | C
X
B | B
X
A | - | | Hepar Calcis
Heptachlor in Petrol. Solvents
Heptanal
n-Heptane
Heptane Carboxylic Acid | A X X X | $\frac{A}{X}$ | A
X
A | A
X
A
C | A
X
A
C | В
Х
А | A
X
X | A
X
B
B | | | Hydrogen Carboxylic Acid
Hydrogen Cyanide
Hydrogen Dioxide, 3%
Hydrogen Dioxide, 10%
Hydrogen Dioxide, 30% | X
B
B
C | B
 | A
A
A | B
B
C
C | B B C C | B
C
B
C
X | | A
B
B
C | | | Heptyl Ablehyde
Heptyl Carbinol
Heptyl Hydride
Hexachlorodipheylmethane
Hexahydrobenzene | X
B
X
X | X
B
X
X | A
B
A
X
A | A
A
X
A | A
A
X
A | X
B
A
X
B | X
A
X
X | X
A
B
X
B | | | Hydrogen Dioxide, 90%
Hydrogen Gas. Cold or Hot
Hydrogen Oxide
Hydrogen Peroxide, 3%
Hydrogen Peroxide, 10% | X
B
A
B | B
A
— | A
A
A
A | X
A
B
C | X
A
B
C | X
C
B
C | C
B
A
B | C
A
B
B | - | | Hexahydrophenol
Hexahydropyridine
n-Hexaldehyde
Hexalin
Hexamethylene | C
X
C
X | $\frac{\overline{x}}{x}$ | A
C
C
A
A | B
X
X
B
B | B
X
X
B
B | A
A
A
X | C
X
B
C
X | C
X
X
C
X | | | Hydrogen Peroxide, 30%
Hydrogen Peroxide, 90%
Hydrogen Sulfide, Dry, Cold
Hydrogen Sulfide, Dry, Hot
Hydrogen Sulfide, Wet, Cold | C
X
A
X | —
X
X | A
X
X
X | C
X
A
X | C
X
A
X | X
A
B
A | B
C
A
A | C C A C B | _
_
_ | | Hexanapthene
Hexane
n-Hexane-1
Hexanedioic Acid
Hexanol | X
X
X
A | X
X
A | A
A
A
B | A
A
B
A | A
A
B
A | 8
8
8
X
8 | X
X
B | 8
8
8
A | | | Hydrogen Sulfide, Wet, Hot
Hydrolube-water/ethy.glycol
Hydroquinol
Hydroquinone
Hydroxypro. Tricarboxy. Acid | X
B
B
A | X
X
X | X
C
X | X
A
C
C
B | X
C
C
B | B
X
X
B | A
X
— | C A X | _
_
_
_ | | Hexane-3-one
n-Hexene-1
Hexone (Hexon)
Hexyl Acetic Acid
Hexyl Alcohol | X
X
C
A | X
X
A | X
A
X
B | X
A
X
C
A | X
A
X
C
A | X
B
X
B | Х
В
В | X
B
X
B
A | | | Hydroxyacetic Acid. 10%
Hydroxybenzene
Hydroxybutane
Hydroxybutanedioic Acid
Hydroxyether | X
X
A
A
X | ×
-
x | X
A
A
B | X
A
B
C | X
A
B
C | X
C
A
C
C | X
C
A
X
A | X
C
A
B | _
_
_
_ | | Hexyl Hydride
Hexyl Methyl Ketone
Hexylamine
Hexylene
Hexylene Glycol | X
C
X
A | X
X
X
A | A
X
X
A | A
C
A
A | A X C A A | B
X
B
A | x x / x c | B
X
C
B
A | | | Hydroxyethyl Acetate
Hydroxyethyl Amine
Hydroxyformic Acid
Hydroxyoctane
Hydroxysuccinic Acid | C
B
A
B
A | _
A
_ | A
C
A
B
A | C
B
A
B | C
B
A
A
B | X
B
A
C | A
B
A
X | X
B
A
B | ======================================= | | High Viscosity Lubricant, U4
High Viscosity Lubricant, H2
HiLo MS
#1
Hi-Tri
Houghto-Safe 271 (Water & Glycol) | | A
X
X
A | A
A
X
A
B | A
X
X
A | A
X
X
A | B
B
X
X
B | A
A
X
A | | | | Hydyne
Hyjet
Hyjet 3, S, W
Hykil #6, 33%, Water 67%
Hypnone | B
X
X
C | 8
X
X
— | X
X
X
X | B
X
C
X | B
X
C
X | B
X
X
X | A
X
X
A | X
X
X | —
—
A | | Houghto-Safe 620 (Water & Glycol)
HouSafe 1010, Phos.Ester
HouSafe 1055, 1120 Phos.Est.
HouSafe 5040 (Water-oil emuls)
Hydrargylite | | A
X
X
X | B
A
A
C | A
X
X
A
B | A
X
X
A
B | B
X
X
B
A | A
A
X
A | X
X
X
B | | | Hypo (Hypochlorite)
Hypochlorous Acid
I.P.A.
Ice Spar (Stone)
Industron FF44,48,53,80 | A
B
B
A
X | <u>X</u> _ X | A
A
A | A
X
B
B | A
X
B
B | A
X
B
A
B | A
B
A
X | A
-
X | _
_
_
_ | | Hydrargyrum
Hydrated Baryton
Hydrated Lime
Hydraulic Fluids
Hydraulic Oil (Petroleum) | A
A
X
X | A
A
X | A
A
A
A | A
A
X
A | A
A
X
A | A
A
X
B | A
A
B
C | A
A
X
B | _
_
A | | lodine (Iodum)
lodine Pentafluoride
lodobutane
lodoethane
lodoform | X
X
X | × × × – | C
X
B | В
X
X
X | В
X
X
— | X
X
X
— | B
X
C
A | В
X
X
— | <u>A</u>
 | | Hydrazine
Hydrazina Benzene
Hydrobromic Acid
Hydrobromic Acid, 40%
Hydrobromic Acid Gas | X
A
B
A
B | <u>x</u> _ x | C
A
A
X | B
X
X
X | B
X
X
X
X | C
X
C
B
X | A
C
A
X | B
C
A
A
X | | | lodopentane
Iron Acetate
Iron Chloride
Iron Dichloride
Iron Hydroxide | X
A
A
C | X | X
A
C | X
A
A
B | X
A
A
B | X
B
B | X
X
A
— | X
A
A
B | = | | Hydrocarbons — Alicyclic
Hydrocarbons — Aliphatic
Hydrocarbons — Aromatic
Hydrocarbons — Chlorinated
Hydrocarbons — Normal | X
X
X
X | X
X
X
X | A
A
A
A | B
A
C
X
A | B
A
C
X
A | X
B
X
X
B | X
X
X
X | X
B
X
X
B |

A | | Iron Monosulfide
Iron Nitrate
Iron Perchloride
Iron Persulfate
Iron Protochloride | A
A
A
A | A A A | A
—
—
A | A
A
A
A | A
A
A
A | A
B
A
B | —
—
—
A | A
—
—
A | = | | Hydrocarbons — Olefinic
Hydrocarbons — Saturated
Hydrochloric Acid, 10%, 6.6BE
Hydrochloric Acid, 20%
Hydrachloric Acid, 25%, 16.0BE | | —
X
A
B
B | A
A
A
A | A
A
B
B | A
A
B
B | —
В
В
С | —
A
A | —
A
A | | | Iron Salts
Iron Susquichloride
Iron Sulfate
Iron Sulfide
Iron Susquisulfate | A
A
A
A | A
A
A
A | A
A
A
A | A
A
A
A | A A A A | B
A
A | A
A
A | A A A A | | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | 1 | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | CSM | XLPE | |---|-----------------------|------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|-------------------------------------|-----------------------|---|---|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|------------------|------------------|-------------------| | Iron Tersulfate
Iron Trichloride
Iron Vitrol
Isoamyl Acetate
Isoamyl Acidic Esther | A
A
X
C | A
A
X | A
A
X
X | A
A
X
X | A
A
X
X | A
B
A
X | A
A
B
B | A
A
X
C | —
—
A
A | | Lead Sulfanate
Lead Sulfate
Lead Tetraethyl
Lead Trinitro Resorcinol
Lehigh X1169, X1170 | B
X
B
X | В
Х
Х | A A A A | B
B
B
A | B
B
B
A | A
X
A
B | A
X
X | A X B | _
_
_ | | Isoamyl Alcohol
Isoamyl Aldehyde
Isoamyl Bromide
Isoamyl Butyrate
Isoamyl Chloride | A X X X | A X X X | A
B
X
A | <u> </u> | A
X
X | A X X X | A
X
X | A X X X | _
_
_ | | Leucogen
Lichenic Acid
Light Aniline
Light Grease
Light Oil, Residual | A C X X | <u>X</u> X | A A A | A
X
A
A | A
X
A
A | A CXX | A
B
X | A CXX | | | Isoamyl Ether
Isoamyl Phthalate
Isobutane
Isobutanol
Isobutyl Acetate | X
X
X
B
X | $\frac{x}{x}$ | C
A
B
X | C
A
B
X | C
X
A
B
X | X
-
B
X | X A C | C
X
X
A
C | | | Ligroin (Ligroine)
Lime
Lime, Agricultural
Lime, Caustic
Lime, Soda | X
A
A
A | X
A
A
A | A
A
A
B | A
A
A
A | A
A
A
A | B
A
A
A | X
A
A
A | C
A
B
B | = | | Isobutyl Alcohol
Isobutyl Aldehyde
Isobutyl Amine
Isobutyl Bromide
Isobutyl n-butyrate | B
C
C
X | | B
X
X
B
C | B
X
X
X | B
X
X
X | B
C
X | A
B
X
A | A
C
X | A
A
— | | Lime and Water
Lime Acetate
Lime Bisulfite
Lime Bleach
Lime Hydrate | ACCBA | A
C
A
B
A | A
A
A | A
B
A
A | A
B
A
A | A
A
B
A | A CAA | B A B A | A
 | | Isobutyl Carbinol
Isobutyl Chloride
Isobutyl Ether
Isobutylene
Isobutyric Acid | A
X
X
X
A | | A B B A | A X B C X | AXBCX | A X - B | 4 × 4 | $\frac{A}{X}$ | | | Lime Nitrate
Lime Saltpeter
Lime Sulfur (dry)
Lime Sulfur (wet)
Limestone | AAXBA | A | A A A A | A | AAXAA | A A A A | 44004 | A B B A | —
A
A | | Isododecane
Isooctane
Isopentane
Isophorone
Isopropanol | X
X
X
A | X
X
X
X | A
A
A
X
A | B
A
X
B | B
A
X
B | A
B
X
X
A | X
X
C
B | A
B
X
X
A | | | Limonene
Lindol, Hydraulic Fluid
Linoil
Linoleic Acid (Linolenic Acid)
Linolic Acid | X
X
X
X | X
X
X | A
B
X
A
A | C
X
B
B | C X X B B | X C X X | X
X
X
X | XXXCC | | | Isopropanol Amine
Isopropyl Acetate
Isopropyl Alcohol
Isopropyl Amine
Isopropyl Benzene | B
X
A
B
X | $\frac{1}{X}$ | XAXA | B
X
B
X | B
X
B
X
X | XAXX | B
B
X
X | C X A C X | A A — | | Linseed Oil
Liquidfied Petroleum Gas
Liquid Oxygen
Liquid Rosin (Retinol)
Liquid Soap | X
X
X
A | X X X | A
A
A
A | A
A
X
A | A | BBXAA | B X X A | B B X B A | A | | Isopropyl Carbinol
Isopropyl Chiloride
Isopropyl Dienacetone
Isopropyl Ether
Isopropyl Methyl Benzenes | B
X
X
X | XXXX | B
B
X
C
A | B X X C X | B
X
C
X | B
X
C
X | A
X
X
X | A
X
X
C
X | | | Liquimoly
Lithium Hydroxide
Lithium Salts
Luboil-Lube Oils
Lubricat. Oil (Crude & Refine) | <u> </u> | × × × | A A A | A A A | A A A | B B B | <u>×</u> × × | x cc | A
A | | Isopropyl Toluene
Japanese Gelatin
Jet Fuels (JP1 to JP6) (A&A1)
Jet Fuel (JPX)(MIL F 25604)
Jew's Pitch | X
A
X
X | X
X
X | A
A
X
A | X
B
A
A | X
B
A
A | X
B
C
C
B | <u>X</u> X X X | X
C
C
B | X
A
A | | Lye
Lysol
Macassar Gum (0il)
Maddrell's Salt
Magnesium Acetate | B
A
A
X | 8
-
A
X | <u>В</u>
А
Х | C
B
B
B | C
B
B
X | B
B
B
X | <u>В</u> — А X | В
—
А | = | | Kalilauge
Kalinite
Kandol
Kel F Liquids
Kerosene | B
X
X | A
X
A
X | C
A
A
B
A | CAAAA | C
A
A
A | B
A
B
B | B
A
X
A
X | A
A
X
A
C | | | Magnes. Ammonium Sulfate
Magnesium Bisulfite
Magnesium Carbonate
Magnesium Chloride, 30%
Magnesium Chloride, 100% | BAAA |) A A A | A
A
A | BAAA | B
A
A | A
B
A
A | A C A A |
 A A A | —
A
A | | Kerosene 10%, 90% Soap & Water
Kerosene 95%, 5% xylene
Keto Hexamethylene
Ketone
Ketones, Aliphatic, Sat. | $\frac{-}{x}$ | | A
X
X | $\frac{-}{x}$ | A
X
X | -
x
c | | | A
A
A | | Magnesium Chloride, 150°F
Magnesium Hydrate
Magnesium Hydroxide
Magnesium Nitrate
Magnesium Oxide | 444 |
 A A A | B
A
A | | В
В
А | —
В
В
А | A A A | A A A | A
A
A | | Ketones, Aliphatic, Unsat.
Ketones, Aromatic
Ketopropane
Keystone #87HX Grease
Krystallin | XCXX | X | XXXAA | XXXX | X
X
A
X | XXX | A
A
X
B | X
X
X
C | | | Magnesium Sulfate
Maize Oil
Maleic Acid
Maleic Anhydride
Maleinic Acid, 25% | AXBBC | ×Þ | A A A A | A | A
X
X | A B A X | AACCX | A B C X | <u>A</u> | | Kurrol's Salt
Kyanol
Labarrague's Solution 20%
Lacquer Solvents
Lacquer Solvents (Synthet) | A
X
X
X | X
X
X | A
X
X | A
X
X
X | A
X
X
X | A C X X | B
X
X | C
X
X | —
—
—
A
A | | Malic Acid
Malonyl Nitrile
Malt Salt
Manganese Sulfate
Manganese Sulfide | AABBC | B
A | A A A | B
A
B
A | B
A
B
A
A | CABA | × 4 | В
—
А | | | Lacquers
Lacquers (synthetic)
Lactic Acid (Cold)
Lactic Acid (Hot)
Lactol | XXCCX | X
C
C
X | XXACA | XXCCC | xxccc | X
B
C
X | X
X
B
C
X | X
X
A
B | A A A A A | | Manganese Sulfite
Maple Sugar Liquors
Marsh Gas
Master Kill Emulsion
MCS 312 | CAXIX | × × | A
A
C
A | A
A
A
X | A A A A X | A B A X
 A X X | A A B X | <u>A</u> <u>A</u> | | Lard
Laughing Gas (Nitrous Oxide)
Lauryl Alcohol
Lavender Oil
Layor Caranga | X
A
A
X
A | $\frac{x}{x}$ | A
A
B
B | A
A
B
B | A
A
B
B | В
—
С
В | c c | C
A
X | A | | MCS 352, 463
M.E.A.
M.E.K.
Mercuric Chloride
Mercuric Cyanide | X
C
X
B
A | Х
Х
В
А | X
X
A | X
C
X
A
B | X
C
X
A
B | X
C
X
B | A
A
A | X
X
A | —
A
A | | Lead Acetate
Lead Arsenate
Lead Chloride
Lead Nitrate
Lead Styphnate | B B B B | X
A
A | X
A
A | 8 B | <u>В</u>
В
В | A
B
B
A | A A | <u>A</u> <u>A</u> <u>A</u> <u>A</u> | A A A A | | Mercurous Nitrate
Mercury
Mercury Bichloride
Mercury Chloride
Mercury Vapor | AABBX | A A X | A
A
A
X | B
A
A
X | B
A
A
X | B
A
B
B | A
A
A
X | A
A
A
X | A A A A | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | |--|-----------------------|--------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------|--|-----------------------|-------------------|------------------|-----------------------|-----------------------|-----------------------|------------------|------------------|--------------------------| | Mesity! Oxide (Ketone)
Methadiene
Methally! Alcohol
Methana! - 40%
Methanamide | X
X
A
B
A | X
X
A | X
A
B
A
X | X
C
A
B | X
C
A
B | X
X
B
A | B
X
A
A | X
X
A | | Mineral Thinner
Miners Oil
Mirabilite
Mittel H.N.A.
M.M.V. | X
A
C
A | X A A | X
A
X
A | X
A
X
A | X
A
X
A | X
A
X | X
A
A | X
A
X
A | | | Methane
Methanol
Methyl Acetate
Methyl Acetoacetate
Methyl Acetone | X
A
X
C | X
X
X | A
C
X
X | A
X
X | A
X
X
X | B
C
X | X
B
A
X | B
A
B
X | A A A | Mobil Jet 2
Mobil SX-90 Oil
Mobil XRM 206A
Mobil 240TE.HF.1100.1110.1120.1130
Mobil Nyvac 20, 30 | XXX | X
X
A | A
B
A
A | X
X
A | X
X
A | X
X
B
A | X
X
A | XXX | = | | Methyl Acrylate
Methyl Acrylic Acid
Methyl Alcohol
Methyl Alcohol - Wood
Methyl Amine | X
A
A | X
A
A | X
B
C
X | X
A
A
B | X
A
A
B | C
B
A
A | B
B
B | X
A
A
X | —
A A A | Mobil Velocite C
Mobil Gas WA200 Type A, ATF
Mobil Oil SAE 20
Mobiltherm 600
Mobiltux | X
X
X | X
X
X
X | A
A
A
A | A
A
A | A
A
A
A | 8
8
8
8 | X
X
X
X | X
B
B | = | | Methyl Amyl Acetate
Methyl Amyl Alcohol
Methyl Amyl Carbinol
Methyl Amyl Ketone
Methyl Aniline | X
A
A | <u>X</u> | X
B
— | X
A
A | X
A
A | <u>X</u> A | <u>X</u> | B A A — | 444 | Molasses
Molten Sulfur
Molysite
Monoammonium Phosphate
Monobromo benzene | A
A
A
X | A
A
A
X | A A A A | A
A
A
X | A
X
A
A
X | A
X
B
A
X | A
A
A
X | A
A
A
X | $\frac{\overline{X}}{A}$ | | Methyl Benzene
Methyl Bichloride
Methyl Bromide
Methyl D-Bromide
Methyl Butanol | X
X
C
X
A | $\frac{x}{x}$ | A
B
A
B | C
X
C
X
A | C
X
C
X
A | X
X
X
X
A | X
C
A
X | X
X
X
A | | Monobromo Trifluoromethane
Monobutyl Ether
Monochloroethane
Monochloroacetic Acid
Monochloroacetone | X
B
B
X | <u>x</u> <u>x</u> | X A B | CCX | CCXX | X
B
X
C | - cxx | X
B
X
B | = | | Methyl Butanone
Methyl Butyl Ketone
Methyl Butyrate
Methyl Caritol
Methyl Cellosolve | $\frac{x}{x}$ | $\frac{x}{x}$ | $\frac{x}{x}$ | X
X
C
C | X
X
C
C | XXX | X
B
X
B | X
X
X
A
B | | Monochlorobenzene
Monochlorodifluoromethane
Monochlorophenol
Monochlorotrifluoromethane
Monoethanolamine | X
X
X
B | <u>×</u> × × – | A X B X C | X
X
X
B | X
X
X
X
B | X
X
X | X
X
X
B | X
X
X
B | A
A
A | | Methyl Cellulose
Methyl Chloride
Methyl Cyanide
Methyl Cyclohexane
Methyl Cyclopentane | B
X
B
X | X
X
X | X
B
X
B
A | B
C
X | B
X
C
X | B
X
A
X | B
C
A
X | B
X
B
X | A A | Monoethyl Amine
Monoisopropanol Amine
Monomethyl Amine
Monomethyl Aniline
Monomethyl Ether | C B X X C | | × 000 | C
B
X
X | C
B
X
X | | ××× | CCXXX | = = = | | Methyl Ether
Methyl Ethyl Ketone
Methyl Formate
Methyl Hexane
Methyl Hexanol | X
X
X
A | X
X
X | X
X
A
B | A
X
X
A | A
X
X
A | X
B
A | A
A
X | B
X
C
B
A | A A | Mon'sod. Acid M'than'ars'nat'
Monovinyl Acetate
Monovinyl Acetylene
Monsell's Salt
Mopar Brake Fluid | X
B
A | X
A
A | | X
A
C | X
A
A
C | A
X
B
A
B | X
A
A | X
B
A
B | = | | Methyl Hexanone
Methyl Hexyl Carbinol
Methyl Hexyl Ketone
Methyl Hydrate
Methyl Hydride | X
X
A
X | | X
C
A | X
B
X
A | X
B
X
A | — х
А
В | | X
X
A
B | « | Morea Premic
Morrhua Oil
Mosaic Gold
Motor Spirits
Muriate of Ammonia | A
X
A
X
A | <u>×</u> | A A | B
A
B | B
A
B
A | B B A | A X A | B
A
B
A | | | Methyl Hydroxide
Methyl Iodide
Methyl Isobutyl Carbinol
Methyl Isobutyl Ketone
Methyl Isopropyl Ketone | A
A
B
X | <u>A</u> X | C
X
X | A
X
B
X | A
X
B
X | A
X
A
B
X | B
A
A
X
C | A
A
X | A A A | Muriatic Acid
Mustard Gas
Muthmann's Liquid
Naptha
Naptha - Coal Tar | A
X
X | ×× > | 44 44 | X
X
A
X | X X X X | XAXCX | O4 XX | B A C X | | | Methyl Methacrylate
Methyl Methane
Methyl Normal Amyl Ketone
Methyl Oleate
Methyl Phenol | X
X
X
X | X
X
X
X | X
A
X
B
A | X
A
X
X
C | X
A
X
X
C | X
B
X
X | C
X
C
X | A
B
X
X
B | A | Napthalene (Napthaline)
Napthenic Acid
Napthylbenzene
Natural Gas (Dry)
Natural Gas (Wet) | X
X
C | ×××c | 44 4 | X
B
X
A | X
B
X
A | X | ×× 0 | X A A | A A A | | Methyl Polysiloxanes
Methyl Proponal
Methyl Propyl Benzene
Methyl Propyl Carbinol
Methyl Propyl Ether | X
A
X
A | A X | A X B | A
A
X
A
X | A
X
A
X | X
X
— | A X | A X A B | 11111 | Navee
Neet's Foot Oil
Neohexane
Neon
Neosol | XXAA | XXA | AAC | C
A
A
A | C
A
A
A | <u> </u> | B A |
 × | = = | | Methyl Propyl Ketone
Methyl Salicylate
Methyl Acetal
Methylacrylic Acid
Methylallyl Acetate | X
X
B
X | x
x
x | X
B
X
B
X | x
x
x | $\frac{x}{x}$ | X
X
C
B | B C A B | X X B B | A A | Neutral Oil
Neu-Tri
Neville Acid
Nevoll
Nickel Acetate | X
X
A | ××× | A A B A | A
C
C
B | A
C
C
B | A CCB | <u>В</u> А |

 | <u>A</u>
 | | Methylallyl Chloride
Methylated Spirits
Methylene Bromide
Methylene Chloride
Methylene Chlorobromide | X
A
X
X | <u>х</u>
х
х | C
B
B
X | X
A
X
X | X
A
X
X | B
X
X | A
C
X | X
A
X
X | 84 | Nickel Ammonium Sulphate
Nickel Chloride
Nickel Nitrate
Nickel Plating Soln.
Nickel Salts | A A A | 4 4 4 | 444 4 | A
A
B
A | A
A
B
A | A A B | 4 4 4 | A A A A | A A A A | | Methylene Dichloride
MIBK
Milk (Whole)
Milk Acid - 50%
Milk of Magnesia | X
X
B
C
A | X
X
B
A | X
X
A
A | X
X
B
C
B | X
X
B
C
B | X
A
B
B | X
B
A
B | X
X
A
A | 44 | Nickel Sulfate
Nickelous Sulfate
Nicotine Bentonite
Nicotine Salts
Nicotine Sulfate | B
A
A | В
А
—
А | A C C | A
A
A
A | A
A
A
A | A A A | A A | 44 | A
A
A | | Mine Fluid 3XF
Mineral Naptha
Mineral Oil
Mineral Pitch
Mineral Spirits | X
X
X | ×××× | A
A
A
A | A A A A | A
A
A | CBBC | X
X
X | C B B B | —
A
A | Niter - Potassium Nitrate
Niter - Sodium Nitrate
Niter Cake
Nitrana 2 & 3
Nitratine | A
B
A
B | <u>A</u> | A
A
C
A | A
C
A
B
C | A
C
A
B
C | A
B
A
B
B | A
A
A | A A A A | _
_
A | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | - | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | |---|-----------------------|---------------------|-----------------------|------------------|-------------------|------------------|-----------------------|-----------------------|----------------------|--|-----------------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|------------------| | Nitration Benzol
Nitric Acid — 10%, 7.5 BE.
Nitric Acid — 25%
Nitric Acid — 35%, 2610 B
Nitric Acid — 50% | | x x x x |
—
A
A
A | | | B
C
X | —
В
В
С
Х | —
В
А
В | A A A A A | Olein
Oleum
Oleum Lini
Oleum Spirits
Olive Oil | X
X
X
X | X
X
X | B
A
A | B
X
A
C | B
X
A
C
A | C
X
B
X
B | X B C A | C B C B | | | Nitric Acid — 69%, 42.1 BE.
Nitric Acid — 86%, 46.5 BE.
Nitric Acid, Conc.
Nitric Acid, Crude
Nitric Acid, Dilute | X
X
X
X | X
X
X | B
B
A
A | X
X
X
X | X
X
X
X | X
X
X
B | X
X
A | B
B
C
A | A A A A | Oronite 8200, 8515
Orthoboric Acid
Orthochloroethyl benzene
Orthodichlorobenzene
Orthodichlorobenzol | X
A
X
X | X
A
X
X | A
A
A
A | B
A
X
X | B
A
X
X | A
X
X | X
A
X | X
X
X | _
_
_ | | Nitric Acid — Red Fuming
Nitrobenzene
Nitrobenzine
Nitrocalcite
Nitrocarbol | X
X
A | X
X
A | B
A
A
C | X
X
A
X | X
X
A | X
X
A
C | X
C
C
A
A | X
X
A
C | X
A
— | Ortho-hydroxybenzoic Acid
Orthoxylene
OS 45 Type III
OS 45 Type IV
OS 70 | C
X
X
X | X
X
X | —
A
A
A | X
X
B
B | X
X
B
B | X
A
A | —
X
X | —
Х
В
В | | | Nitroethane
Nitrogen
Nitrogen Fertilizer Soln.
Nitrogen Tetroxide
Nitroglycerine | B
A
X | A X | C A C | X A B X | X A B X | C A B X C | B A C | В
А
Х |
 | Oxalic Acid
Oxyethylene Succinic Acid
Oxygen — Cold
Oxygen — 250-400°F
Oxymethylene — 40% | B
A
B
X
C | В
X
X | C
A
A
B | C
B
C
X
C | C
B
C
X
C | B
C
A
X
C | AXBX | B
A
X | A
—
A | | Nitrohydrochloric Acid
Nitromethane
Nitromuriatic Acid
Nitrooctane
1-Nitropropane | X
B
X
X | X C X | A
X
A
C | X
X
X | x
x
x | XCXCC | C A C A | B
C
B
— | | Oxymuriate of Tin
Ozone
P-D-680
P-S-661b
Paint Thinner Duco | A
X
X
X | A
X
X
X | A
A
A
B | A
A
A | A
X
A
A | A
B
X
C
C | B
X
X | A
C
C
X | A
 | | Nitrous Acid
Nitrous Monoxide
Nitrous Oxide
Nitrosyl Chloride
Nitroxanthic Acid | -
A
C |
 -
 - | A
A
A | A A B C | A A B C | —
В
С | —
—
—
B | A
A
A | A

 | Painter's Naptha
Paint Oil
Palm Oil
Palmitic Acid
Paper Maker's Alum | X
X
C
A | $\frac{x}{x}$ | —
A
A | X
A
A
A | X
A
A
A | X
C
B
A |

 | A
B
B | A A A | | Nonanoic Acid
Nonenes
Norge Niter
Norge Saltpeter
Norway Saltpeter | X
A
A | 444 | A A A | A A A A | A A A A | | —
A
A | X
X
A
A | | Para San 10% Paradichlorobenzene Paradichlorobenzine Paradichlorobenzol Paradihydroxybenzene | A X X C | X
X
X | C
A
A | B
X
X
X | B
X
X
X | A
X
X
X | | A
X
X | <u>A</u> | | Norwegian Saltpeter
N.P.N.
O-A-548-A
O-T-634-b
Oakite Alkaline Materials | A
B
X
A | A
X
— | A
B
A | A
C
B | A C B | A
B
X
A | A
X | A
B
X | | Paraffins
Paraform
Paraformaldehyde
Paraldehyde
Par-al-ketone | X
X
C
X | X
X
X | A
C
C
X
X | A
B
B
C
X | A
B
B
C | В
В
В
Х | X
—
A
X | <u>x</u> _ x | _
A
_ | | Oakite — 0.C. 31 & 32
Oakite — 0.C. 33 & 34
Oakite — 0.C. 36, 84H, 84M
Oakite — 0.C. 85
Oakite — 0.C. 88 | C
X
C
X | | = | 1111 | | C
X
C
X | | = | | Paraxylene Paris Green & Lime 37% Parker O Lube Patent Alum Peanut Oil | X
X
A
X | X
B
A | A
A
A | C
A
A
A | C
A
A
A | X
A
A
B | X
X
A
C | X
B
A
A
B | | | Oakite — O.C. 131 Oakite — Cryscoat FH Rinse Oakite-O Drycid & O.F.M.184 Oakite — O Stripper S.A. Oakite Solvent Materials | C
X
C
X | - | = | _
_
_
x |
 -

 x | C
X
X
X | _
_
_
_ | = | | Pear Alum
Pear Oil
Pearl Ash
Pelarbonic Acid
Pelargonic Acid | A
C
A
X | _
A
_ | —
X
A
— | A
X
A | A
X
A | A
X
A | В
А
— | C
A
B
X | | | Octachlorotoluene
Octadecane
Octadecanoic Acid
Octadecatrienoic Acid
Octafluoroccyclobutane | X
X
X
X | X
X
— | A
A
B
— | X
A
B
X | X
A
B
X | X
B
B
X | X
X
B
— | X
B
C
— | | Pentachlorodiphenyl
Pentachlorodiphenyl oxide
Pentachloroethane
Pentachloroethylbenzene
Pentachlorophenol | X
X
X
X | | —
A
A | X
X
X
X | X
X
X
X | X
X
X
X | _
_
_
x | _
x
_ | | | Octane
n-Octane
Octanol
2-Octanone
n-Octene-2 | X
X
B
X | <u>x</u> <u>x</u> _ | A
A
B
X
A | A
A
X | A
A
X | | | X
X
B
X | <u>A</u> | Pentachlorophenylbenzoate
Pentachlorodiphenyl Ketone
Pentahydroxy Hexoic Acid
Pentamethylene Amine
Pentane | X
X
X
X | $\frac{\overline{x}}{x}$ | | X
X
C
X
A | X
X
C
X
A | X
X
X
B | _
_
x | —
В
Х
С | | | Octoic Acid
Octyl Acetate
Octyl Alcohol
n-Octyl Alcohol
Octyl Aldehyde | C
X
B
B | X
B
B | X
B
B | C
X
A
X | C
X
A
X | _
B
B | | B
A
A
X |

 | n-Pentane
n-Pentane, 2 Methyl
n-Pentane, 2-4 Dimethyl
n-Pentane, 2 Methyl, 3 Methyl
n-Pentane, 3 Methyl | X
X
X | X
X
X | A
A
A
A | A
A
A | A
A
A | A
B
B
A
B | X
X
X | B
B
B | | | Octyl Amine
Octyl Carbinol
Octylene Glycol
Octylic Acid
Octylic Alcohol | C
A
C
B | | X
B
A
B | C A C A | C A C A | _
_
_
B | _
_
_
A | C
A
A
B
A | | 2, 4-Pentane Dione
Pentanoic Acid
Pentanoi
Pentanone
Pentasol | C
A
A
X
A | —
A
X
A | X
A
X
A | X
X
A
X | X
X
A
X | X
X
A
X
A | A
A
B | X
A
X
A | | | Oil of Acetone
Oil of Bitter Almonds (Art.)
Oil of Hartshorn
Oil of Mirbane
Oil of Palma Christi | B
X
X
X
B | | X
A
A
A | X
X
A
X | X
A
X
A | C
X
X
A | A
C
C
B | A
X
X
X | | Pentasodium Triphosphate
Pentene
Pentene-2, 4-Methyl
Pentyl Amine
Pentyloxypentane | X
X
C | <u>x</u> _ x | | X
B
C
C | Х
В
С
С | X
A
B
X | | x c c | | | Oil of Turpentine
Oil of Vitriol
Okonite
Olefiant Gas
Oleic Acid | X
X
A
X | X
A
X | A
A
A | A
A
A | A
A
A | | Х
С
В | X
C
A
A
B | _
_
_
A | Perchloric Acid
Perchloroethylene
Perchloromethane
Permachlor
Peroxide — 3% | A
X
X
B | <u>x</u> _ | A
C
A | X
X
X
B | X
X
X
X
B | A
X
X
B | B
X
X
B | A
X
—
B | A
-
-
A | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | |--|-----------------------|--------------------|------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|-------------|--|------------------|--------------|-------------|------------------|-----------------------|------------------|------------------|-----------------------|------------------| | Peroxide — 10%
Peroxide — 30%
Peroxide — 90%
Peroxydol
Peroxyhydrate | B
C
X
B
A | _
_
_
A | A
A
A | C
C
X
B
A | C
C
X
B
A | C
X
B
A | B
B
C
A | BCCA | A A A | Plating Solution—Lead
Plating Solution—Nickel
Plating Solution—Platinum
Plating Solution—Silver
Plating Solution—Tin | A B B | 1111 | | B | B

 | B A | | | _
_
_
_ | | Peru Saltpeter
Petrol
Petrolatum
Petrolene
Petroleum—Below 250°F | B
X
X
X | X
X
X | A A A | C
A
A
A | C
A
A
A | 8 8 8 B B | X
X
X | A
X
B
B
C | —
A
X | Plating Solution—Zinc
Polyethylene Glycol
Polyformaldehyde
Polyoxymethylene
Polypropylene Glycol | B
A
X
A | X X A | A C A | A
X
B
A | A
X
B
A | | _
_
_
_ | A
A | _
_
_
_ | | Petroleum—Above 250°F
Petroleum—Crude
Petroleum—Ether
Petroleum Naptha
Petroleum Oils | X
X
X
X | X
X
X | B
A
A
A | C
A
A
A | C
A
A
A | X C B B B | X
X
X | X
X
X
X | × × – | Polyvinylacetate Emulsion
Potash
Potash—Alum
Potash—Caustic
Potassa | B A B B | B | 0400 | CACC | CACC | B | A
B
B
B | B
A
A
A | _
_
_
_ | | Petroleum Pitch
Petroleum Spirits
Petroleum Thinner
Phene
Phenetole (Phenetol) | X
X
X
X | × × × | A
A
C | A
X
X | A
X
X
X | B
B
X
X | X
X
X | $\frac{X}{X}$ | | Potassium Acetate
Potassium Alum
Potassium Aluminum Sulfate
Potassium Bicarbonate
Potassium Bichromate | B
A
A
X | 11111 | B A A A A | B
A
A
A | B
A
A
A | B
A
A
B | A
A
A | B
A
A
B | —
—
A | | Phenic Acid
Phenmethylol
Phenol
Phenol 70%, 30% Water
Phenol Polysiloxane | X
C
X
X | <u>X</u> X X | A A A A | X
X
X
A | X
X
X
A | CCXXX | occx | C B X X | \ | Potassium Bisulfate
Potassium Bisulfite
Potassium Borates
Potassium Bromide
Potassium Carbonate |
4444 | 11111 | 4444 | 4444 | A A A A | 4444 | —
—
A
A | A
A
A
A | —
A
A | | Phenol Sulfonic Acid
Phenol Trinitrate
Phenolates
Phenoxide
Phenoxin | X
X
X
X | ×
×
× | Х
В
В
А | XXX | X
X
X
C | XXX | _
_
_
x | $\frac{x}{x}$ | 1111 | Potassium Chlorate
Potassium Chloride
Potassium Chromate
Potassium Chromic Sulfate
Potassium Cupro Cyanide | A A A A | 11111 | 44 4 | A A A A | A A A A | A A A | A A — A | A C A | | | Phenoxybenzene
Phenyl Acetate
Phenyl Aldehyde
Phenyl Amine
Phenyl Benzene | X
C
X
X | <u>X</u> X X | A
X
X
A | X
X
X
X | X
X
X
X | X
X
C
X | X
B
B
X | CCXCX | 11111 | Potassium Cyanide
Potassium Dichromate
Potassium Hydrate
Potassium Hydroxide
Potassium Hypochlorite | A X B B C | | 00>> | AACCX | AACCX | AABBC | A
A
B
B | A
B
A
A
B | A
A
A | | Phenyl Bromide
Phenyl Carbinol
Phenyl Chloride
Phenyl Ethane
Phenyl Ether | X
C
X
X | X
X
X | B
A
A
A | X
X
X
X | X
X
X
X | X
C
X
X | X
C
X
X | X
B
X
C | | Potassium lodide
Potassium Muriate
Potassium Nitrate
Potassium Nitrite
Potassium Oxide | —
A
A
A | | A
A
A | A
A
A
B | A
A
A
B | A
A
A
A | A
A
A | A
A
A | _
A
_ | | Phenyl Ethyl Ether
Phenyl Formic Acid
Phenyl Hydrazine
Phenyl Hydride
Phenyl Hydride | X
B
A
X | Х
В
Х
Х | X
A
A
A | X
X
X
X | X
X
X
X | X
A
X
C | X
B
X
C | X
B
X
C | 11111 | Potassium Permanganate
Potassium Phosphate
Potassium Silicate
Potassium Sulfate
Potassium Sulfide | A A A | 1111 | A A A A A | C A A | C A A A | C
A
A
A | A A A A A | B
A
A
A | A — A | | Phenyl Methane
Phenyl Methyl Ketone
Phenylic Acid
Phorone
Phosphate Esters | X
C
X
X | <u>X</u> X X X | A
X
A
A | C
X
X
X | C
X
X
X | X
C
X | X
A
C
C
C | X
X
C
X | | Potassium Sulfite
Potassium Thiosulfate
Potato Oil
Potato Spirit
Prestone | A A A A | 11111 | A A A A | A A A A | A
A
A
A | A A A A | A A A | A A A A | A
-
- | | Phospholeum
Phosphoric Acid, 10%
Phosphoric Acid, 20%
Phosphoric Acid, 50%
Phosphoric Acid, 85% | X
A
B
C | - C X | —
A
A
A | A
C
X | A
C
X | X
B
B
B | A
A
B
B | A
A
B | A A A A | Producer Gas
PRL Hi-Temp. Hydr. Oil
Propane
Propanediamine
Propanediol | C X X B A |
 -
 - | A A A A | A
B
A
B | A
B
A
B | 888 | C
X
A | B
X
B
C
A | A
A
— | | Phosphoric Acid, Conc.
Phosphoric Acid, Crude
Phosphoric Acid, 3M
Phosphorous Oxychloride
Phosphorous Trichloride Acid | C
C
B
X
X | <u>х</u>
В
— | A A A A | X C X | X
X
X | B C C X X | B C A A | B
A
X
X | 444 | Propanetriol
Propanol
2-Propanone
Propanepropionitrile
Propenal | A A B X B | × | AAXAA | A B X A B | A
B
X
A
B | 4408 | A B A X | A
A
B
B
B | A | | Photogen
Pickle Alum
Pickling Solution
Picric Acid (Molten)
Picric Acid (Water Solution) | X
A
C
C
A |
 -
 - | A
A
B
A | A C B | A
A
C
B | C A C C B | X A C C B | C A A A | | Propene
Propene Oxide
Propenol
Propenyl Hydrate
Propenylanisole | X A X | 11111 | A B A B | X A A X | X
A
A
X | XX44 | X
B
A
A | X
X
A
A
X | | | Picronitric Acid
Pimelic Ketone
Pinacol (Pinacolin)
Pine Oil
Pinene | C
X
A
X | X
A
X | A
A
A | C
X
A
B | C
X
A
B | C
A
X | B
C
X | A X X | _
_
A | Propionic Acid
Propionitrile
Propyl Acetate
n-Propyl Acetate
Propyl Acetone | A
X
X | | | X
X
X
X | X
X
X
X | X
B
X
X | A
C
A | -
-
- | _
A
_ | | Piperidine
Pitch (Pine Tar)
Plating Solution—Antimony
Plating Solution—Arsenic
Plating Solution—Brass | X
X
B
B | X
-
- | C
A
— | X
-
- | X
A
— | X
B
— | X
-
- | X
B
— | | Propyl Alcohol
Propyl Aldehyde
Propyl Chloride
Propyl Cyanide
Propyl Ethylene | A
C
X
X | 11111 | A X B | B
X
X
C | B
X
X
C | <u>A</u> | В
—
А
X | * X X — | A
 | | Plating Solution—Cadmium
Plating Solution—Chrome
Plating Solution—Copper
Plating Solution—Gold
Plating Solution—Iron | A BBB | | | 8
-
A | B — — — A | B
-
- | | C | | Propyl Formic Acid
Propyl Nitrate
Propylene
Propylene Aldehyde
Propylene Chloride | X | 11111 | CAXB | <u>X</u> X X | <u>X</u> X X | $\frac{x}{x}$ | —
Х
Х | C
X
X | | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | |--|-----------------------|--------------------|------------------|------------------|-----------------------|-----------------------|------------------|-----------------------|--------------------|----------------------------|--|-----------------------|------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------| | Propylene Diamine
Propylene Dichloride
Propylene Glycol
Propylene Oxide
Protochloride | B
X
A
A | = = = | B
A
— | B X A | B
X
A
— | X
8 | X
A
B | C
X
A
X | _
_
 | Sea S | Water
ndary Butyl Acetate | X A A X | <u>×</u>
 | A
A
A | X
A
B
A | X
A
B
A | X
A
B
A | C A A A | X
A
A
B | _
_
A | | Prussic Acid
Purin Wood Pint Spry 10%
Purple Salt
Pyracetic Acid
Pyranol | B
X
C
X | = | A C A A | B X B C A | B
X
B
C
A | C X C X | В
—
В
X | A | _
_
 | Sewa
Sewa
Shale | ran NP-10
ige
irage
e Naptha
Alvania Grease #2 | ACCXX | | —
A
A
A | —
A
A
A | —
A
A
A | —
A
B
B | —
В
В
Х | A
A
X | | | Pyranol 1467
Pyranol 1476
Pydraul F-9
Pydraul 10E.29ELT.30E.50E.65E.90E
Pydraul 115E | | | A A A | A
X
X | A
X
X
X | C
B
X
X | X
X
B
B | | A
A
A
A | Shell
Shell
Shell | Carnea 19, 29
Diala, Iris 905
Iris 3XF Mine Fluid
Iris Tellus #27, #33
Iris UMF | ×××× | X
X
X
X | A
A
A
A | A
A
A
A | A
A
A
A | X
B
B
B | X
X
X
X | X
X
B
X | = | | Pydraul 230E, 312C, 540C
Pyrene
Pyrex
Pyridine
Pyridine Oil | X
X
X | <u>x</u>
 | A
A
C
X | X C C X X | X
C
X
X | X
X
X
— | X
X
B | X
X
X | A
-
A | Shell
Shell
Sher | Lo Hydrax 27, 29
Macoma
DD
wood Oil
an's Gas | X
X
X
C | ×
×
— | A
C
A
A | A
A
X
A | A
X
A
A | B
B
X
B | X
X
X
C | X
X
X
X
B | _
A
_ | | Pyrite Pyroacetic Ether Pyroacetic Spirit Pyrogallolcarboxylic Acid Pyrogard 42,43,53,55 | A X B A X | | A X A A | A X X X | A
X
X
X | XCCX | —
A
B
A | A
B
B
X | 11111 | Silica
Silica
Silica | t Spirit
ate Esters
ate of Soda
ofluoric Acid
one Greases | A X A A B | | B
A
A
A | A
A
A
B
A | A A B A | B
B
A
B
A | A
X
A
B
A | A
A
A
A | 1111 | | Pyrogard C, D
Pyroligneous Acid
Pyrolineous Acid
Pyroligneous Spirit
Pyrolube | X
X
A
X | ×
-
x | A
X
C
A | A X A X | А
Х
А
Х | В
Х
А
Х | Х
В
В
В | X
X
B
A
X | | Silve
Silve
Sincl | one Oils
r Cyanide
r Nitrate
air Opelene CX-EP-Lube
y Solve B,C,E | C A A X | | A
A
C | A
B
A | A
B
A | C
A
B
A | A
A
X | A
A
B | A A | | Pyromuccic Aldehyde
Pyroxlic Spirit
Pyrrole
Quatemary Ammonium Salt
Quicklime | XACAA | | CCA | XAXAA | X
A
X
A | X | B C A | | 11111 | Skýc
Skyc
Slaki | Iraul 500
Iraul 7000
Iraul Hydraulic Fluid
ed Lime
Solutions | X
X
A
B | | C C B A A | X
X
A
A | X
X
A
A | X
X
A
B | B
A
C
A
A | X
X
X
B
A | | | Quicksilver
Quinol
Quenching Oil
Radiation
Rape Oil | A
B
B
X | | AС ВА | ACABB | A C A B B | A X B B B | A CA | A
A
B
B
B | A | Soco
Soco
Soda | ny Mobil Type A
ny Vacuum AMV-AC 781
ny Vacuum PD-959B
I
I Alum | XXXA | ××× | A A A A | A A A A | 4444 | B
B
B
A
A | X
X
A
A | X
X
B
A
A | | | Rapeseed Oil
Raw Linseed Oil
Red Line 100
Red Oil
Red Potassium Chromate | X
X
X
X | | A A A A | B
A
A
B | B
A
A
B | B
B
C
X | A
B
X
B | 8
8
8 | 1111 | Soda
Soda
Soda | Ash
— Baking
— Caustic
— Lime
— Niter (Nitre) | A
A
A
B | | A
A
B
B | A
A
B
B
C | A
A
B
C | A
A
B
B | A
A
A
A | A
A
B
B
A | A
_
_ | | Retinol
Rhigolene
Richfield "A" 100%
Richfield "D" 33%
Ricinus Oil (Racinine) | X
X
B | = = | A
C
C
A | A C B A | A
C
B
A | A
B
X
B
A | X
X
X
B | B
B
X
A | —
A
A | Soda
Soda
Sodi | n — Saltpeter
n — Washing
n
um Acetate
um Acid Carbonate | B A B C A | | A
X
A | C
A
B
C
A | C
A
B
C
A | B
A
B
B | A
A
A |
A
A
A | _
_
A | | Rock Salt
Roman Vitroil
Rosin Oil
Rotenone & H20
Rum | A
C
A
A | = = | A
A
A
B | В
А
А
А | B
A
A
A | A
A
A
A | A
A
A | A
B
A | _
A
_ | Sodi
Sodi
Sodi | um Acid Sulfate
um Alum
um Aluminate
um Aluminum Sulfate
um Arsenate | A
A
A
A | | —
A
A | B
A
A | B
A
A | A
A
A | A
A | A A A | = | | RJ-1 (MIL-F-25558),RP-1 (MIL-R-2557:)
Saccharose
Saccharum-Amylaceum
Saccharum Solutions
SAE #10 0ii | X
A
B
A
X | <u>×</u>
_
_ | A
A
A
A | A A B A A | A
A
B
A | B
A
B
A
B | X
A
A
C | B
A
A
C | 1 1 1 | Sodi
Sodi
Sodi | um Benzoate
um Bicarbonate
um Bichromate
um Bisulfate
um Bisulfite | A
A
X
A | | —
A
A
A | —
—
—
A | —
—
—
—
A | —
В
А | —
A
A
A | A
B
A
A | | | Sal Ammoniac
Sal Chalybdis
Sal Soda
Sal Tarfari
Sal Volatile | A A A A | = | A A A A | A A A X | A
A
A
X | A
A
A
B | A
A
A
A | A
A
A
B | | Sodi
Sodi
Sodi | um Bisulphate
um Borate
um Bromides
um Carbonate
CarbAnhydrous | A
A
A
A | | A
A
A | A
A
A | A
A
A | A A A | A
A
A | A A A A | A
—
A | | Salicylic Acid
Salimiak (Salmiac)
Saliter (Salitre)
Salt
Salt Cake | A
B
A
A | = = | A A A A | XACAA | X
A
C
A | X
A
B
A | A
A
A
A | A
A
A
A | | Sodi
Sodi
Sodi | CarbHydrated
um Chlorate
um Chloride
um Chromate
um Cyanide | A A A A | | A
A
A | A
A
A | A
A
A | A
B
A
A | A
A
A | A
A
C
A | —
A
A | | Salt of Lemery
Salt of Tartar
Salt of Vitriol
Salt Water
Saltpeter-Ammon, Nitrate | A
A
A
A | = | A A A A | A A B A | A
A
B
A | A
A
B
A | A
A
A
A | A
A
A
A |
 -
 -
 - | Sodii
Sodii
Sodii | um Dichromate
um Dimetaborate
um Dioxide
um Diphosphate
um Disulfite | X
A
B
A
B | | A
A
— | B
B
A | B
B
A
A | В
А
В
В | A
A
B
— | B
A
A | <u>A</u>
 | | Saltpeter-Calc. Nitrate
Saltpeter-Potas. Nitrate
Saltpeter-Sodium Nitrate
Sand Acid
Sanitisizer 160 (Monsanto) | A
B
A
X | = = = | A
A
A
B | A C B | A
C
B | A
B
B | A
A
B
A | A
A
A | | Sodi
Sodi
Sodi | um Fluoaluminate 10%
um Fluoride
um Hexmetaphosphate
um Hydrate
um Hydrochlorite | A
A
A
C | | A
A
B
A | A
B
C
C | A
A
B
C
C | A
A
B
B
C | A
A
A
B | A
—
B
A | A
A
— | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | CSM | XLPE | |---|-----------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------| | Sodium Hydrogen Carbonate
Sodium Hydrogen Sulfate
Sodium Hydroxide
Sodium Hypochloride
Sodium Hypochloride — 5% | A A C C | _
_
_
_ | A
A
B
A | A C X C | A
C
X
C | A A B C C | A
A
C
B | A
B
A | —
A
A | | Sodium Hypochlorite — 20%
Sodium Hyposulfite
Sodium Iodine
Sod. Metabor. PeroxHydr.
Sodium Metaphosphate | X | | A A A | X
A
A
B | X
A
A
B | X
A
A
C | C A A | A
A
—
B | A
—
—
A | | Sodium Nitrate
Sodium Nitrite
Sodium Perborate
Sodium Peroxide
Sodium Phosphates | B B B A | _
_
_
_ | A
A
A
A | C B B B | C B B B | B
A
B
B | A
A
B
A | A
A
B
A | A
A
A
A | | Sodium Pyroborate
Sodium Salts
Sodium Sesquicarbonate
Sodium Silicate Sulfate
Sodium Silicates | A
A
A
A | _
_
_
_ | A
-
-
A | В
—
А
А | B
—
A
A | A
A
A
A | A
—
—
A | A
A
—
A | _
A
_
_ | | Sodium Stannic Chloride
Sodium Subsulfite
Sodium Sulfates
Sodium Sulfide
Sodium Sulfites | A
A
A
A | _
_
_ | —
A
A
A | B
A
A
A | B
A
A
A | X
A
A
A | —
A
A
A | —
A
A
A | _
_
_
_ | | Sodium Superoxide
Sodium Tetraborate
Sodium Thiosulfate
Sodium Triphosphates
Sodium Tripolyphosphate | B
A
A
A | = | A
A
A | B
A
A
A | B
A
A
A | B
A
A
A | B
A
A | A
A
— | _
A
_ | | Solene
Soluble Glass
Solvasol #1, 2, 3
Solvasol #73
Solvasol #74 | X
A
— | _
_
_
_ | A
C
C
C | A
A
C
X | A
A
C
X | B
A
— | X
A
— | X
A
— | _
_
_ | | Soya Oil (Soy Oil)
Soybean Oil
Spirit
Spirits of Turpentine
Spirits of Vinegar | X
X
A
X
B | _
_
_
_ | A
A
B
A
C | A
A
A
C | A
A
A
C | B
B
A
C
B | B
B
A
X
A | A
A
A
X
B | _
A
_
_ | | Spirits of Wine
Spry
SR6 Fuel
SR10 Fuel
Standard Oil Mobil Lube GX90EP | A
X
X
X | | B
A
A
A | A
A
B
A | A
A
B
A | A
B
X
X
B | A
B
X
X | A
X
X
X
B | _
_
_
_ | | Stannic Chloride
Stannic Sulfide
Stannous Chloride
Stannous Sulfide
Starch Syrup (Sugar) | A
A
A
B | = | A A A | A
A
A
B | A
A
A
B | A
A
B | В
В
А | A
A
A
A | A
A
— | | Stauffer 7700
Steam, to 225°F
Steam, 225° to 300°F
Steam, over 300°F
Stearic Acid | X
C
X
X | <u>x</u>
 | A
X
X
X
A | B
C
X
A | B
C
X
X | X
C
X
B | X
A
C
B | X
B
C
X
C | —
A
A
A | | Stoddard Solvent
Stripper S.A.
Styrene
Sublimed White Lead
Sucrose Solution | X
X
X
B
A | _
_
_ | A A A | A X B A | A
X
B
A | C
X
X
A | $\frac{X}{X}$ | $\frac{x}{x}$ | A
A
— | | Sugar of Lead
Sug. LiqCane.Beet & Maple
Sulfamic Acid
Sulfite Cellulose Liquors
Sulfitic Liquors | B A B B B | _
_
_ | X
A
A
A | B
A
B
A | B
A
B
A | A
A
A
A | A
A
B
B | A
A
B
A | _
_
_
_ | | Sulfunic Acid
Sulfur
Sulfur — 250°F
Sulfur Chloride
Sulfur Dioxide | X
C
X
C | = | X
A
B
A | X
B
C
C | Х
В
С
С | B
X
C
C | —
A
A
X
A | C
A
C
A | A
A
X
A | | Sulfur Diox1% at 100°F
Sulfur Dioxide — Liquid
Sulfur Hexafluoride
Sulfur Monochloride
Sulfur Subchloride | —
В
X
X | = | A
A
A
A | XBCC | X
B
C
C | A
A
B
C
C | A
B
A
X | —
A
A
A | _
_
_ | | Sulfur Trioxide, Dry
Sulfurated Lime
Sulfuretted Hydrogen
Sulfuric Acid — 10%, 9BE
Sulfuric Acid — 25% | X
C
A
B | | A
B
A | C
A
X
B
C | C
A
X
B
C | C
B
C
A
B | C
A
A
B | B
C
A | A
—
A
A | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | CSM | XLPE | |--|------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|----------------------------------|------------------| | Sulfuric Acid — 50%, 41BE
Sulfuric Acid — 60%, 48BE
Sulfuric Acid — 75%, 58BE
Sulfuric Acid — 95%, 66BE
Sulfuric Acid — 100% | B
C
X
X | - | A A A A B | C
X
X
X | CXXX | B
C
X
X | BBCCX | AABCC | A A A X | | Sulfuric Acid — conc.
Sulfuric Acid — Dilute
Sulfuric Acid — Fuming
Sulfuric Acid — Oleum
Sulfuric Ether | X
A
X
X | _
_
_
_ | A
A
B
X | X
B
X
B | X
B
X
B | X
X
X
X | CAXX | CACCB | X
X
X
— | | Sulfurous Acid — 10%
Sulfurous Acid — 10% to 75%
Sulfurous Acid — 100%
Sulfurous Acid Anhydride
Sulfurous Oxychloride | B
B
C
X | = = | A A A — | XXX | X
X
C
X | X
X
X | 00 | A A A A | | | Sulfite Liquors
Summer Oil
Sunoco SAE 10
Sunoco #3661
Sunoco All Purpose Grease | B
X
X
X | | 4444 | 4444 | 4444 | A
A
B
B
B | В —
X X X | A B B B | —
—
— | | Sunsate
Super Shell Gas
Superphosphoric Acid
Swan Finch EP Lube
Swan Finch Hypoid-90 | X
X
X | ×
×
× | A
A
A
B | A | A
A
A
A | B
X
8 | X
X
X | В
Х
Х | - | | Sweet Birch Oil
Sweet Oil
Syrup
TT-N-95a
TT-N-97B | X
X
X
X | | BA AA | X B A A B | X B A A B | X B A C C | CA XC | 00 m | _
_
_ | | TT-I-735b
TT-S-735 Type I
TT-S-735 Type II, III
TT-S-735 Type IV
TT-S-735 Type V, VI | A
X
X | A
X
X | A
A
A
A | A A A A | A
A
A
A | B
C
A
B | A
X
X
X | B B C A B | | | TT-T-656b
Table Salt
Tall Oil
Talloi
Tallow | X
A
X
X | <u>x</u>
 | X
A
A
A | X
A
A
A | X A A A A | X
A
B
B | A
X
X
A | XACCC | | | Tan
Tannin Acid
Tannin
Tanning Liquors
Tanning Solutions | A
A
A
B | = | A
A
A | CCCAA | CCCAA | A
A
A
A | 000 | A
A
B | _
_
_
_ | | Tar (Bituminous)
Tar (Camphor)
Tartaric Acid
Taxaphene 12%
T.C.A. | X
X
A
X | = | A
A
— | 8
8
8
X | B X B B X | C
X
C
B
X | X
X
B
— | C
X
A
X | X
A
— | | T.C.P.
T.E.A.
Terpene
Terpineol (Terpilenol)
Tertiary Butyl Alcohol | C
B
X
A | | B A A B | X B C C A |
VOOGX | CXXXA | A X B A | C X X A | 1111 | | Tertiary Butyl Catechol
p-Tertiary Butyl Catechol
Tertiary Butyl Mercaptan
Tetrabromoethane
Tetrabromomethane | C
C
X
X | = | A
A
A | X
X
X
X | X
X
X | B
X
X
X | <u>В</u> <u>X</u> | <u>В</u>
<u>X</u>
<u>—</u> | | | Tetrabutyl Titanate
Tetrachlorobenzene
Tetrachlorodifluoroethane
Tetrachlorodifluoromethane
Tetrachloroethane | B
X
X
X | _
X
X | A
B
—
A | B
X
X
X | B
X
X
X | A
X
X | В
—
—
X | A X — X | _
A
_ | | Tetrachloroethylene
Tetrachloroethane
Tetrachloronapthalene
Tetradecanol
Tetraethyl Lead | X
X
X
A | ×
-
- | A
A
B
B
A | X
C
X
A
B | X C X A B | X
-
X | X
-
-
X | X
X
X
X | A A | | Tetraethyl Orthsilicate
Tetraethylene Glycol
Tetrafluoromethane
Tetrahydrofuran
Tetrahydronapthalene | X
A
X
X | | —
—
X
A | A
X
X | A
X
X
X | A X C X | - BCX | A
X
X | _
_
A | | Tetralin
Tetrane
Tetrol
Texaco 3450 Gear Oil
Texaco Capella A & AA | X
X
X
X | _
_
X | A
C
A
A | X
A
X
B | X
A
X
B
B | X
B
X
X
B | X
C
X
X | X
X
X | _
_
_
_ | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE |]] | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | |--|-----------------------|------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------|-----|--|-----------------------|------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------| | Texaco Meropa #3
Texaco Regal B
Texaco Uni-Temp Grease
Texamatic A Transmiss. Oil
Texamatic 1581 Fluid | X
X
X
X | X
X
X
X | A
A
A
A | X
A
A | X
X
A
A | B
X
B
B | X
X
X
X | X
X
X
X | | | Turpentine Turpentine Substitute Turps Two Four D with 10% Fuel Oil Type I Fuel (MIL-S-3136) | X
X
X
X | _
_
_
x | A
A
A | A
A
A | A
X
A
A | C
X
X
A
B | <u>X</u> X X | х
-
х
-
в | A
—
A | | Texamatic 3401 Fluid
Texamatic 3525,3528 Fluid
Texas 1500 Oil
Thenardite
Theta Octadecenoic Acid | X
X
A
X | X
X
— | A
A
A | A
A
A
X | A
A
A
X | B
B
B
A
B | X
X
A | X
X
A | | | Type II Fuel (MIL-S-3136)
Type III Fuel (MIL-S-3136)
Ucon Hydrolube Oils
Ucon Lubricants LB-65, LB-135
Ucon Lubric. LB-285, LB-300 | X
X
A
A | X
X
A | A
A
A
A | B
A
A
A | B
A
A
A | X
B
A | X
X
A | X
X
A | —
A
A | | T.H.F.
Thioethyl Alcohol
Thiokol TP90B
Thiokol TP95
Thionyl Chloride | X
-
X | _
x
x | X
B
A
A | X
X
X
X | X
X
X
X | —
Х
В
В
Х | —
X
A
X | X
B
B | | - | Ucon Lubric. LB-625, LB1145
Ucon Lubr. 50-HB55, HB100
Ucon Lubr. 50-HB260, HB660
Ucon Lubricant 50-HB5100
Ucon Oil LB-385, LB-400X | A
A
A | A
A
A
A | A
A
A
A | A
A
A
A | A
A
A
A | A
A
A
A | A
A
A
A | A A A A A | A
A
A
A | | Thiophene (Thiophen)
Tidewater Oil-Beedol
Tidew. Multigear 140EP Lube
Tin Bichloride
Tin Chloride | X
X
X
A | -
x
- | C
A
A
A | X
A
A
A | X
A
A
A | X
B
B
A | X
X
B
B | —
X
B
A | | | Ucon Oil 50 — HB-280X
U.D.M.H.
Undecanol
Univis 40, Hydraulic Fluid
Univolt #35, Mineral Oil | A
X
X | A
-
X
X | A
X
B
A | A
C
A
A | A
C
A
A | A B B | A
A
X | A
A
B
X | A
-
- | | Tin Crystals
Tin Dichloride
Tin Protochloride
Tin Salts
Tin Tetrachloride | A
A
A
A | 11111 | A
A
A | A
A
A | A
A
A
A | A
A
A
A | B
B
B | A
A
A
A | | | Unslaked Lime
Unsym. Dimethyl Hydrazine
Uran
Urea
VV-B-680 | A
B
A
B | 1 | | A C B B B | A
C
B
B | A B B B B | A
—
—
A | A A A B | _
A
A | | Tincal (Tinkal)
Titanium Tetrachloride
T.N.T.
Tollet Vinegar
Toluene | A
X
X
B
X | 11111 | AACAA | BCXCC | BCXCC | A
X
A
B
X | A
X
A
X | AXBBX | | | VV-G-632
VV-G-671c
VV-H-910
VV-I-530a
VV-K-211d | X
B
X | 11111 | A A A A | A A C A A | A
C
A | AABBC | X
X
X
X | AABBC | | | Toluene Diisocyanate
Toluidine (Toluidin)
Tolune Trichloride
Toluol (Toluole)
Toxaphene 12% | x
x
x | _
_
_
x | B
B
A | X
X
C
B | X
X
C
B | Х
—
Х
В | AX | <u>x</u> | A A | | VV-K-220a
VV-L-751b
VV-L-800
VV-L-8206
VV-L-825a, Type I | X
X
X
X | - X
X
X | A
A
A
A | A
B
A
A | A
B
A
A | B | X
X
X
X | ССВВА | | | Transformer Oil (PCB) Transmission Fluid Type A Triacetin Triammonium Phosphate Triaryl Phosphate | X
X
B
A
X | 1111 | A
C
A
A | B
A
A
X | B
A
A
X | C C A A C | X
X
A
A | B C B A C | A | | VV-L-825a, Type II
VV-L-825a, Type III
VV-0-526
VV-P-216a
VV-P-236 | X
X
X
X | X
X
X
X | A
A
A
A | A
B
A
A
B | A
B
A
A
B | A B A B B | X
X
X
X | ACABC | | | Tributoxy Ethyl Phosphate
Tributyl Amine
Tributyl Mercaptan
Tributyl Phosphate
Trichloracetic Acid | B
B
X
C | | B
A
X
B | X
B
X
C | X
B
X
X
C | X
X
X
B | A
X
C
B | X C X C B | | | Valeric Acid
Valerone
Varnish
Vegetable Oil
Versilube, F44, F50 | A
X
X
C | | X
A
A | X
B
A
A | X
X
B
A | X X C B C | A
B
X
A | X
C
B
A | _
A
A | | Trichlorobenzenes
Trichloroethane
Trichloroethylene
Trichloromethane
Trichloromonofluoromethane | X
X
X
X | 1111 | 8
A
A | X
X
X
X | X
X
X
X | X
X
X
X | | X
X
X | A A | | Vinegar
Vinegar Naptha
Vinegar Salts
Vinyl Acetate
Vinyl Benzene | B
X
B
X
X | 11111 | A
X
X
A | C
X
B
X | C
X
B
X | 8 X B — | A B A — | BXACX | A
 | | Trichloropropane
Trichlorotoluene
Trichlorotrifluoroethane
Tricresyl Phosphate
Tridecamol | X
X
C
A | | B
-
B
B | X
X
X
A | X
X
X
A | | _
_
A
_ | X CA | A A | | Vinyl Chloride
Vinyl Cyanide
Vinyl Ether
Vinyl Oxide
Vinyl Toluene | C
B
X
X | 1111 | A
X
X
A | X
X
B
B | X
X
B
X | X
B
— | C X — | X C B B X | A
 -
 - | | Triethanol Amine
Triethyl Aluminum
Triethyl Amine
Triethyl Borane
Triethylene Glycol | B
X
B
X
A | 11111 | B
B
A
A | B
X
A
X
A | B
X
A
X
A | B
X
B
X | B | A A | 4 | | Vinyl Trichloride
Vinylene Chloride
Vitriol, Oil of
V.M. & P. Naptha
Wagner 218 Fluid | X
X
X
— | 11111 | A
B
A
X | XXXAC | X
X
A
C | XXXBA | BCXA | XXCXB | 11111 | | Trifluorovinyl Chloride
Trihydroxybenzoic Acid
Trihydroxyethyl Amine
Trimethyl Methane
Trimethyl Pentane | X
A
C
X | | — A A A | X
B
A | X
X
B
A
A | | -
B
-
X | —
В
—
Х
В | 11111 | | Walnut Oil
Washing Soda
Water — Acid Mine
Water-Distill., Lab,Ret.Cond.
Water, Fresh | X
A
A
A | 11111 | A
A
A
A | A A A A | A
A
A
A | B
A
C
C
B | _
A
A
A | 4444 | | | Trimethylene Glycol
Trinidad Pitch
Trinitrophenol
Trinitrotoluene
Trioctyl Phosphate | A
C
X | 1111 | A
A
C
B | A C X X | A
C
X | B
C
A
X | A
X
B
X
A | A
B
A
B
X | 1111 | | Water, Seawater-River Water
Water Glass
Water Proofing Salt
Wax
Wax Distillate | A
A
X | 11111 | A
-
- | B A B A A | B
A
B
A | 8 A B A B | A | 44 4 | | | Triolein
Triphenyl Phosphate
Tripolyphosphate
Trisodium Phosphate
Tritolylphosphate | X
X
A
C | 1111 | C
A
B | B
X
X
A | B
X
X
A
X | C X A C | —
—
A
A | CAC |
 | | Wemco — C
Whiskey
White Caustic
White Copperas
White Lead Sulfate | X
A
A
A | <u>x</u>
 | A
B
A
A | А
В
В
А
В | A
8
8
A
B | B
A
B
A
A | X
A
A | X A B A A | | | Trotyl
Tung Oil
Turbine Oil
Turb.Oil #15 (MIL-L-7808A)
Turbo Oil #35 | X
X
X
X | _
_
X
X | C
B
A
A | X
A
B
B | X
A
B
A | A
B
B
X
B | X
C
X
X | B
B
X
X | A
A
— | | White Liquor
White Oil
White Pine Oil
White Vitroil
Whiting | A
X
A
A | _
_
_
_ | A
A
A | A
B
A
A | A
B
A
A | A
B
X
A | A
X
X
A
A | A
X
A
A | _
_
_
_ | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | CSM | XLPE | |---|-----------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------| | Wines
Wintergreen Oil
Wolmer Salts
Wood Alcohol
Wood Naptha | A
X
A |
A
A
A | вв СС | A
X
A | A X A A | AXAAA | A
C
B
B | A
—
A | <u>A</u>
— | | Wood Oil
Wood Spirit
Wood Tar
Wood Vinegar
Wood Oil | X
A
X
A
B | <u>x</u>
 | B
C
A | A
A
B
C
A | A
A
B
C
A | B
A
X
C
A | C
B
X
B | B
A
X
A | | | Xenon
Xylene
Xylidine's (Xylidin)
Xylidines, Mixed
Xylol | A
X
X
X | A
X
X
X | AACCA | A
C
X
C | ACXXC | A
X
X
X | A
X
C
A
X | A
X
X | _
_
_ | | Xylol Stoddard Solvent
Zala
Zeolite (Zeolitic)
Zinc Acetate
Zinc Butter | XABAB | B x | 44404 | X B C C B | хвссв | XACCB | 4444 | XAABA | | | Zinc Carbonate
Zinc Chloride
Zinc Chromate
Zinc Sulfate
Zinc Vitriol | A B A A | A B | 44 44 | A B A A | A B A A | B A A | A A A | AACAA | A A | | Zirlite
MIL-A-6091
MIL-A-8243B
MIL-C-4339C
MIL-C-5545C | A A B X X | AAXX | CABAA | A
B
A
B | A B A A B | AABXC | A A A X B | B
A
B
X
C | | | MIL-C-6529C
MIL-C-8188C
MIL-F-9500
MIL-F-5566
MIL-F-5602 | XXAAX | X
A
B
X | А
В
А
А | B
B
A
B | 8 B A B A | B
X
A
B
B | X
B
A
B
X | C
X
A
X
B | | | MIL-F-7024A
MIL-F-16884
MIL-F-16929A
MIL-F-17111
MIL-F-19605 | X
X
X | X
X
X
X | A A A A | A A A A | 4444 | XCCBC | X
X
X
X | BCCXC | | | MIL-F-25172
MIL-F-25524A
MIL-F-25554B
MIL-F-25676C
MIL-F-25656B | X
X
X
X | X
X
X
X | A A A A | A
A
A
A | A A A A | C C B C X | X
X
X
X | ССВСХ | | | MIL-G-2108
MIL-G-3278
MIL-G-4343B
MIL-G-5572
MIL-G-7118A | X
X
X
X | X
X
X
X | A A A A | A
B
B
A
B | A
B
B
A
B | A
X
B
X
C | X
X
C
X | A
X
B
X
C | | | MIL-G-7187
MIL-G-7421A
MIL-G-7711A
MIL-G-10924B
MIL-G-15793 | X
X
X
X | X
X
X
X | A
A
A
A | A
B
A
A | A B A A A | X
C
X
C | X
X
X
X | X
C
X
B
C | | | MIL-G-18709A
MIL-G-21568A
MIL-G-23827A
MIL-G-25013D
MIL-G-25537A | X
B
X
X | X
A
X
X | A
A
A
A | A
A
A
A | A
A
A
A | A
A
C
B
B | X
A
X
X | A A C B B | | | MIL-G-25760A
MIL-G-27343
MIL-G-27617
MIL-H-5559A
MIL-H-5606B | X
A
B
X | X
A
B
A
X | A
A
B
A | B
A
X
A | B
A
X
A | C A B B | X
A
A
X | C A B B | | | MIL-H-6083C
MIL-H-7083
MIL-H-7644
MIL-H-8446B
MIL-H-13862 | X
B
X
X | X
B
A
X | A
B
A
A | A
A
B
B | A
A
B
B
A | B
B
B
B | X
A
A
X | B
B
B | | | MIL-H-13866A
MIL-H-13910B
MIL-H-13919A
MIL-H-19457B
MIL-H-22072 | X
B
X
X
B | X
A
X
X
A | A
A
X
B | A
B
A
X
A | A
B
A
X
A | B
B
B
X
B | X
A
X
A | B
B
B
X
B | _
_
_
_ | | | NR | SBR | FPM | NBR | NBR II | CR | EPDM | сѕм | XLPE | |--|------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|-------------| | MIL-H-22251
MIL-H-25598
MIL-H-27601A
MIL-H-46001A
MIL-H-46004A | x x x x | B
X
X
X | A A A A | B
A
B
A | B A B A A | B B B A B | A
X
X
X | B B C A B | | | MIL-H-81019B
MIL-H-83282
MIL-I-8660B
MIL-I-27686D
MIL-J-5161F | X X A B X | XXAAX | A
A
B
A | A
A
A
B | A
A
A
B | B
B
A
B
X | X
X
A
X | В
В
А
В
Х | | | MIL-J-5624G, JP-3
MIL-J-5624G, JP-4
MIL-J-5624G, JP-5
MIL-L-644B
MIL-L-2104B | XXXCX | XXXCX | A A A A | A
A
A
A | A
A
A
A | X
X
C
B | X
X
C
X | X
X
C
C | | | MIL-L-2105B
MIL-L-3150A
MIL-L-3503
MIL-L-3545B
MIL-L-5020A | X
X
X
X | X
X
X
X | A
A
A
A | A
A
A
B
A | A
A
B
A | A B B B B | X
X
X
X | A B B C C | | | MIL-L-6081C
MIL-L-6082C
MIL-L-6085A
MIL-L-6086B
MIL-L-6387A | X
X
X | X
X
X | A
A
A
A | A
A
B
A
B | А
А
В
А
В | B
B
X
A
X | X
X
X | B
B
X
A
X | | | MIL-L-7645
MIL-L-7808F
MIL-L-7870A
MIL-L-8383B
MIL-L-9000F | X
X
X
X | X
X
X
X | A
A
A
A | B
B
A
A | B
B
A
A
A | B
X
B
A
B | X
X
X
X | C
X
A
C | | | MIL-L-9236B
MIL-L-10295A
MIL-L-10324A
MIL-L-11734B
MIL-L-14107B | X
X
X
X | X
X
X
X | A
A
A
A | B
A
A
C | B
A
A
C | X
B
C
A | X
X
X
X | X
B
C | | | MIL-L-15016
MIL-L-15017
MIL-L-15018B
MIL-L-15019C
MIL-L-15719A | X
X
X
C | X
X
X
B | A
A
A
A | A
A
A
B | A
A
A
B | B
B
A
A
B | X
X
X
B | B
B
A
B | | | MIL-L-16958A
MIL-L-17331D
MIL-L-17353A
MIL-L-17672B
MIL-L-18486A | X
X
X
X | X
X
X
X | A
A
A
A | A
A
A
A | A A A A A | B
B
C
A | X
X
X | B
B
C
A
A | | | MIL-L-19701
MIL-L-21260
MIL-L-22396
MIL-L-23699A
MIL-L-25336B | X
X
X
X | X
X
X
X | A
A
A
A | A
A
B
A | A
A
B
A | C B A C C | X
X
X
X | C B A C C | | | MIL-L-25681C
MIL-L-25968
MIL-L-26087A
MIL-L-27694A
MIL-L-46000A | B
X
A
X | B
X
A
X | A
A
A
A | B
A
A
A | B
A
A
A | B
C
A
A
C | A
X
X
X | B
C
A
C | | | MIL-L-46002
MIL-0-11773
MIL-P-12098
MIL-P-27402
MIL-P-46046A | Х
8
В | X
X
A
B
A | A A A A A | A
A
B
B
B | A
A
B
B
B | A C B B B | X
X
A
A | A C B B B | | | MIL-S-3136B, Type I Fuel
MIL-S-3136B, Type II, Fu
MIL-S-3136B, Type III, Fu
MIL-S-3136B, Type IV
MIL-S-3136B, Type V | X
X
X
X | X
X
X
X | A
A
A
A | A
B
B
A
A | A
B
B
A
A | B
X
X
A
B | X
X
X
X | C
X
X
A
B | | | MIL-S-3136B, Type VI
MIL-S-3136B, Type VII
MIL-S-81087
MIL-T-9188B | X
X
A
X | X
X
A
X | A
A
X | A
A
A
X | A
A
A
X | X
C
A
X | X
X
A | X
C
A
X | _
_
_ | ## Corrosion Resistance of Coupling Materials RATINGS: 1. Excellent 2. Good 3. Fair or conditional X. Not satisfactory NOTE: No rating indicates no data available. | AGENT | MALL. IRON / STEEL | BRASS | BRONZE | ALUMINUM | GLASŠ | STAINLESS 410, 416, 430 | 302, 303, 304, 308 | 316 | MONEL | AGENT | MALL. IRON / STEEL | BRASS | BRONZE | ALUMINUM | GLASŜ | STAINLESS 410, 416, 430 | 302. 303, 304, 308 | 316 | MONEL | |---|--------------------|--|---|--------------------------------------|-------|---|--------------------|---|---
--|--|--|--------|---|-------|---|--------------------|--|---| | Acetate, Solvents, Crude Acetate, Solvents, Pure Acetic Acid Acetic Acid Vapros Acetic Anhydride Acetone Acetylene Alcohols Aluminum Sulfate Alums Ammonium Gas Ammonium Hydroxide Ammonium Hydroxide Ammonium Nitrate Ammon. Phos, (Ammoniacal) Ammon. Phosphate (Neutral) Ammonium Sulfate Asphalt Beer Beet Sugar Liquors Benzol Benzine Borax Boric Acid Butane, Butylene Butadiene Calcium Bisulfate Calcium Hypochlorite Cane Sugar Liquors Carbon Dioxide (Dry) Car. Diox. (Wet & Aqueous Sol) Carbon Disulfide Carbon Tetrachloride Chlorine (Dry) Chorine (Wet) Chromic Acid Citric Acid Coke Oven Gas Copper Sulfate Core Oils Creosote Ethers Ethylene Glycol Ferric Chloride Ferric Sulfate Formaldehyde Formic Acid Freon Furfural Gasoline (Sour) Gasoline (Refined) Gelatin Glucose Glue | XX3111XX1111 | 31 X X X 1 2 2 3 3 X 3 X X X X 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 X X X X 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 X X X X 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 X X X X 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 X X X X 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 X X X X 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 X X X X 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X X 3 3 3 X X X X 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 X X X X 3 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 X X X X 3 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 3 X X X X 3 3 3 3 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 3 X X X X 3 3 3 3 2 2 2 2 2 1 1 1 3 1 1 X 3 2 1 3 3 1 2 X X 3 3 3 X X X X 3 3 3 3 2 2 X X 3 3 X X X X | 1 1 3 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | NNINNT 2311111331122 1111211 | SSP30 | 21XXX1111X31111332X2111311XX212212X3331111111X11X113111111X3X311231 | 303, | 916 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2123212122X13322222111111111111123113322231111111X312111X31123311 | Magnesium Sulfate Mercuric Chloride Mercury Milk Molasses Natural Gas Nickel Chloride Nickel Sulfate Nitric Acid Oleic Acid Oxalic Acid Oxalic Acid Oxalic Acid Petroleum Oils (Sour) Petroleum Oils (Refined) Phosphoric Acid-25% Phosphoric Acid-25% Phosphoric Acid-25% Phosphoric Acid-50-85% Pricric Acid Potassium Chloride Potassium Chloride Potassium Sulfate Propane Rosin (Light) Shellac Sludge Acid Sodia Ash (Sodium Carbonate) Sodium Bisulfate Sodium Chloride Sodium Chloride Sodium Chloride Sodium Chloride Sodium Chloride Sodium Chloride Sodium Propane Sulfate Sod | 1312 1 1 3 X X 3 1 3 1 1 1 1 3 X X 3 1 3 1 1 1 1 | SSEE 2 X X 3 2 2 X 3 X 3 3 1 3 3 1 X X X X 3 X 2 1 2 X 2 X 2 1 3 3 X X X X 3 3 3 3 3 2 2 3 3 2 X X 3 X X X X | BRONZE | 3 X X 1 1 X X 3 1 1 1 1 1 3 X X 3 3 X 1 | | 1X1221X32231231XXXX231111111X11X311X2111 11X1111211X1XXX32X 21113113313 | 303, | 916
1311112121111111111111111111111111111 | 1 X 2 3 1 1 2 1 X 1 1 1 1 1 X 1 2 2 2 X 1 1 1 1 | | Lime Sulfur
Linseed Oil
Magnesium Chloride
Magnesium Hydroxide | 1
2 | X
1
3
2 | = | 1
X
X | = | 2
3
1 | 1
1
2
1 | 1
1
1
1 | 1 1 1 | Wines | 3 | 2
1
X
3 | = | | = | 3
1
X
3 | 1
1
X
2 | 1
1
2
1 | 2
1
1
1 | REPRINTED BY THE COURTESY OF R.M.A.